refs / refs-internal.hon commit submodule--helper clone: check for configured submodules using helper (ee92ab9)
   1#ifndef REFS_REFS_INTERNAL_H
   2#define REFS_REFS_INTERNAL_H
   3
   4/*
   5 * Data structures and functions for the internal use of the refs
   6 * module. Code outside of the refs module should use only the public
   7 * functions defined in "refs.h", and should *not* include this file.
   8 */
   9
  10/*
  11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
  12 * refs (i.e., because the reference is about to be deleted anyway).
  13 */
  14#define REF_DELETING    0x02
  15
  16/*
  17 * Used as a flag in ref_update::flags when a loose ref is being
  18 * pruned. This flag must only be used when REF_NODEREF is set.
  19 */
  20#define REF_ISPRUNING   0x04
  21
  22/*
  23 * Used as a flag in ref_update::flags when the reference should be
  24 * updated to new_sha1.
  25 */
  26#define REF_HAVE_NEW    0x08
  27
  28/*
  29 * Used as a flag in ref_update::flags when old_sha1 should be
  30 * checked.
  31 */
  32#define REF_HAVE_OLD    0x10
  33
  34/*
  35 * Used as a flag in ref_update::flags when the lockfile needs to be
  36 * committed.
  37 */
  38#define REF_NEEDS_COMMIT 0x20
  39
  40/*
  41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a
  42 * value to ref_update::flags
  43 */
  44
  45/*
  46 * Used as a flag in ref_update::flags when we want to log a ref
  47 * update but not actually perform it.  This is used when a symbolic
  48 * ref update is split up.
  49 */
  50#define REF_LOG_ONLY 0x80
  51
  52/*
  53 * Internal flag, meaning that the containing ref_update was via an
  54 * update to HEAD.
  55 */
  56#define REF_UPDATE_VIA_HEAD 0x100
  57
  58/*
  59 * Used as a flag in ref_update::flags when the loose reference has
  60 * been deleted.
  61 */
  62#define REF_DELETED_LOOSE 0x200
  63
  64/*
  65 * Return true iff refname is minimally safe. "Safe" here means that
  66 * deleting a loose reference by this name will not do any damage, for
  67 * example by causing a file that is not a reference to be deleted.
  68 * This function does not check that the reference name is legal; for
  69 * that, use check_refname_format().
  70 *
  71 * A refname that starts with "refs/" is considered safe iff it
  72 * doesn't contain any "." or ".." components or consecutive '/'
  73 * characters, end with '/', or (on Windows) contain any '\'
  74 * characters. Names that do not start with "refs/" are considered
  75 * safe iff they consist entirely of upper case characters and '_'
  76 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
  77 */
  78int refname_is_safe(const char *refname);
  79
  80enum peel_status {
  81        /* object was peeled successfully: */
  82        PEEL_PEELED = 0,
  83
  84        /*
  85         * object cannot be peeled because the named object (or an
  86         * object referred to by a tag in the peel chain), does not
  87         * exist.
  88         */
  89        PEEL_INVALID = -1,
  90
  91        /* object cannot be peeled because it is not a tag: */
  92        PEEL_NON_TAG = -2,
  93
  94        /* ref_entry contains no peeled value because it is a symref: */
  95        PEEL_IS_SYMREF = -3,
  96
  97        /*
  98         * ref_entry cannot be peeled because it is broken (i.e., the
  99         * symbolic reference cannot even be resolved to an object
 100         * name):
 101         */
 102        PEEL_BROKEN = -4
 103};
 104
 105/*
 106 * Peel the named object; i.e., if the object is a tag, resolve the
 107 * tag recursively until a non-tag is found.  If successful, store the
 108 * result to sha1 and return PEEL_PEELED.  If the object is not a tag
 109 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
 110 * and leave sha1 unchanged.
 111 */
 112enum peel_status peel_object(const unsigned char *name, unsigned char *sha1);
 113
 114/*
 115 * Return 0 if a reference named refname could be created without
 116 * conflicting with the name of an existing reference. Otherwise,
 117 * return a negative value and write an explanation to err. If extras
 118 * is non-NULL, it is a list of additional refnames with which refname
 119 * is not allowed to conflict. If skip is non-NULL, ignore potential
 120 * conflicts with refs in skip (e.g., because they are scheduled for
 121 * deletion in the same operation). Behavior is undefined if the same
 122 * name is listed in both extras and skip.
 123 *
 124 * Two reference names conflict if one of them exactly matches the
 125 * leading components of the other; e.g., "foo/bar" conflicts with
 126 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
 127 * "foo/barbados".
 128 *
 129 * extras and skip must be sorted.
 130 */
 131int verify_refname_available(const char *newname,
 132                             const struct string_list *extras,
 133                             const struct string_list *skip,
 134                             struct strbuf *err);
 135
 136/*
 137 * Copy the reflog message msg to buf, which has been allocated sufficiently
 138 * large, while cleaning up the whitespaces.  Especially, convert LF to space,
 139 * because reflog file is one line per entry.
 140 */
 141int copy_reflog_msg(char *buf, const char *msg);
 142
 143/**
 144 * Information needed for a single ref update. Set new_sha1 to the new
 145 * value or to null_sha1 to delete the ref. To check the old value
 146 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
 147 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
 148 * not exist before update.
 149 */
 150struct ref_update {
 151
 152        /*
 153         * If (flags & REF_HAVE_NEW), set the reference to this value:
 154         */
 155        unsigned char new_sha1[20];
 156
 157        /*
 158         * If (flags & REF_HAVE_OLD), check that the reference
 159         * previously had this value:
 160         */
 161        unsigned char old_sha1[20];
 162
 163        /*
 164         * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
 165         * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY,
 166         * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and
 167         * REF_DELETED_LOOSE:
 168         */
 169        unsigned int flags;
 170
 171        void *backend_data;
 172        unsigned int type;
 173        char *msg;
 174
 175        /*
 176         * If this ref_update was split off of a symref update via
 177         * split_symref_update(), then this member points at that
 178         * update. This is used for two purposes:
 179         * 1. When reporting errors, we report the refname under which
 180         *    the update was originally requested.
 181         * 2. When we read the old value of this reference, we
 182         *    propagate it back to its parent update for recording in
 183         *    the latter's reflog.
 184         */
 185        struct ref_update *parent_update;
 186
 187        const char refname[FLEX_ARRAY];
 188};
 189
 190/*
 191 * Add a ref_update with the specified properties to transaction, and
 192 * return a pointer to the new object. This function does not verify
 193 * that refname is well-formed. new_sha1 and old_sha1 are only
 194 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
 195 * respectively, are set in flags.
 196 */
 197struct ref_update *ref_transaction_add_update(
 198                struct ref_transaction *transaction,
 199                const char *refname, unsigned int flags,
 200                const unsigned char *new_sha1,
 201                const unsigned char *old_sha1,
 202                const char *msg);
 203
 204/*
 205 * Transaction states.
 206 * OPEN:   The transaction is in a valid state and can accept new updates.
 207 *         An OPEN transaction can be committed.
 208 * CLOSED: A closed transaction is no longer active and no other operations
 209 *         than free can be used on it in this state.
 210 *         A transaction can either become closed by successfully committing
 211 *         an active transaction or if there is a failure while building
 212 *         the transaction thus rendering it failed/inactive.
 213 */
 214enum ref_transaction_state {
 215        REF_TRANSACTION_OPEN   = 0,
 216        REF_TRANSACTION_CLOSED = 1
 217};
 218
 219/*
 220 * Data structure for holding a reference transaction, which can
 221 * consist of checks and updates to multiple references, carried out
 222 * as atomically as possible.  This structure is opaque to callers.
 223 */
 224struct ref_transaction {
 225        struct ref_update **updates;
 226        size_t alloc;
 227        size_t nr;
 228        enum ref_transaction_state state;
 229};
 230
 231int files_log_ref_write(const char *refname, const unsigned char *old_sha1,
 232                        const unsigned char *new_sha1, const char *msg,
 233                        int flags, struct strbuf *err);
 234
 235/*
 236 * Check for entries in extras that are within the specified
 237 * directory, where dirname is a reference directory name including
 238 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
 239 * conflicting references that are found in skip. If there is a
 240 * conflicting reference, return its name.
 241 *
 242 * extras and skip must be sorted lists of reference names. Either one
 243 * can be NULL, signifying the empty list.
 244 */
 245const char *find_descendant_ref(const char *dirname,
 246                                const struct string_list *extras,
 247                                const struct string_list *skip);
 248
 249/*
 250 * Check whether an attempt to rename old_refname to new_refname would
 251 * cause a D/F conflict with any existing reference (other than
 252 * possibly old_refname). If there would be a conflict, emit an error
 253 * message and return false; otherwise, return true.
 254 *
 255 * Note that this function is not safe against all races with other
 256 * processes (though rename_ref() catches some races that might get by
 257 * this check).
 258 */
 259int rename_ref_available(const char *old_refname, const char *new_refname);
 260
 261/* We allow "recursive" symbolic refs. Only within reason, though */
 262#define SYMREF_MAXDEPTH 5
 263
 264/* Include broken references in a do_for_each_ref*() iteration: */
 265#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
 266
 267/*
 268 * Reference iterators
 269 *
 270 * A reference iterator encapsulates the state of an in-progress
 271 * iteration over references. Create an instance of `struct
 272 * ref_iterator` via one of the functions in this module.
 273 *
 274 * A freshly-created ref_iterator doesn't yet point at a reference. To
 275 * advance the iterator, call ref_iterator_advance(). If successful,
 276 * this sets the iterator's refname, oid, and flags fields to describe
 277 * the next reference and returns ITER_OK. The data pointed at by
 278 * refname and oid belong to the iterator; if you want to retain them
 279 * after calling ref_iterator_advance() again or calling
 280 * ref_iterator_abort(), you must make a copy. When the iteration has
 281 * been exhausted, ref_iterator_advance() releases any resources
 282 * assocated with the iteration, frees the ref_iterator object, and
 283 * returns ITER_DONE. If you want to abort the iteration early, call
 284 * ref_iterator_abort(), which also frees the ref_iterator object and
 285 * any associated resources. If there was an internal error advancing
 286 * to the next entry, ref_iterator_advance() aborts the iteration,
 287 * frees the ref_iterator, and returns ITER_ERROR.
 288 *
 289 * The reference currently being looked at can be peeled by calling
 290 * ref_iterator_peel(). This function is often faster than peel_ref(),
 291 * so it should be preferred when iterating over references.
 292 *
 293 * Putting it all together, a typical iteration looks like this:
 294 *
 295 *     int ok;
 296 *     struct ref_iterator *iter = ...;
 297 *
 298 *     while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
 299 *             if (want_to_stop_iteration()) {
 300 *                     ok = ref_iterator_abort(iter);
 301 *                     break;
 302 *             }
 303 *
 304 *             // Access information about the current reference:
 305 *             if (!(iter->flags & REF_ISSYMREF))
 306 *                     printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
 307 *
 308 *             // If you need to peel the reference:
 309 *             ref_iterator_peel(iter, &oid);
 310 *     }
 311 *
 312 *     if (ok != ITER_DONE)
 313 *             handle_error();
 314 */
 315struct ref_iterator {
 316        struct ref_iterator_vtable *vtable;
 317        const char *refname;
 318        const struct object_id *oid;
 319        unsigned int flags;
 320};
 321
 322/*
 323 * Advance the iterator to the first or next item and return ITER_OK.
 324 * If the iteration is exhausted, free the resources associated with
 325 * the ref_iterator and return ITER_DONE. On errors, free the iterator
 326 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
 327 * call this function again after it has returned ITER_DONE or
 328 * ITER_ERROR.
 329 */
 330int ref_iterator_advance(struct ref_iterator *ref_iterator);
 331
 332/*
 333 * If possible, peel the reference currently being viewed by the
 334 * iterator. Return 0 on success.
 335 */
 336int ref_iterator_peel(struct ref_iterator *ref_iterator,
 337                      struct object_id *peeled);
 338
 339/*
 340 * End the iteration before it has been exhausted, freeing the
 341 * reference iterator and any associated resources and returning
 342 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
 343 */
 344int ref_iterator_abort(struct ref_iterator *ref_iterator);
 345
 346/*
 347 * An iterator over nothing (its first ref_iterator_advance() call
 348 * returns ITER_DONE).
 349 */
 350struct ref_iterator *empty_ref_iterator_begin(void);
 351
 352/*
 353 * Return true iff ref_iterator is an empty_ref_iterator.
 354 */
 355int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
 356
 357/*
 358 * A callback function used to instruct merge_ref_iterator how to
 359 * interleave the entries from iter0 and iter1. The function should
 360 * return one of the constants defined in enum iterator_selection. It
 361 * must not advance either of the iterators itself.
 362 *
 363 * The function must be prepared to handle the case that iter0 and/or
 364 * iter1 is NULL, which indicates that the corresponding sub-iterator
 365 * has been exhausted. Its return value must be consistent with the
 366 * current states of the iterators; e.g., it must not return
 367 * ITER_SKIP_1 if iter1 has already been exhausted.
 368 */
 369typedef enum iterator_selection ref_iterator_select_fn(
 370                struct ref_iterator *iter0, struct ref_iterator *iter1,
 371                void *cb_data);
 372
 373/*
 374 * Iterate over the entries from iter0 and iter1, with the values
 375 * interleaved as directed by the select function. The iterator takes
 376 * ownership of iter0 and iter1 and frees them when the iteration is
 377 * over.
 378 */
 379struct ref_iterator *merge_ref_iterator_begin(
 380                struct ref_iterator *iter0, struct ref_iterator *iter1,
 381                ref_iterator_select_fn *select, void *cb_data);
 382
 383/*
 384 * An iterator consisting of the union of the entries from front and
 385 * back. If there are entries common to the two sub-iterators, use the
 386 * one from front. Each iterator must iterate over its entries in
 387 * strcmp() order by refname for this to work.
 388 *
 389 * The new iterator takes ownership of its arguments and frees them
 390 * when the iteration is over. As a convenience to callers, if front
 391 * or back is an empty_ref_iterator, then abort that one immediately
 392 * and return the other iterator directly, without wrapping it.
 393 */
 394struct ref_iterator *overlay_ref_iterator_begin(
 395                struct ref_iterator *front, struct ref_iterator *back);
 396
 397/*
 398 * Wrap iter0, only letting through the references whose names start
 399 * with prefix. If trim is set, set iter->refname to the name of the
 400 * reference with that many characters trimmed off the front;
 401 * otherwise set it to the full refname. The new iterator takes over
 402 * ownership of iter0 and frees it when iteration is over. It makes
 403 * its own copy of prefix.
 404 *
 405 * As an convenience to callers, if prefix is the empty string and
 406 * trim is zero, this function returns iter0 directly, without
 407 * wrapping it.
 408 */
 409struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
 410                                               const char *prefix,
 411                                               int trim);
 412
 413/* Internal implementation of reference iteration: */
 414
 415/*
 416 * Base class constructor for ref_iterators. Initialize the
 417 * ref_iterator part of iter, setting its vtable pointer as specified.
 418 * This is meant to be called only by the initializers of derived
 419 * classes.
 420 */
 421void base_ref_iterator_init(struct ref_iterator *iter,
 422                            struct ref_iterator_vtable *vtable);
 423
 424/*
 425 * Base class destructor for ref_iterators. Destroy the ref_iterator
 426 * part of iter and shallow-free the object. This is meant to be
 427 * called only by the destructors of derived classes.
 428 */
 429void base_ref_iterator_free(struct ref_iterator *iter);
 430
 431/* Virtual function declarations for ref_iterators: */
 432
 433typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
 434
 435typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
 436                                 struct object_id *peeled);
 437
 438/*
 439 * Implementations of this function should free any resources specific
 440 * to the derived class, then call base_ref_iterator_free() to clean
 441 * up and free the ref_iterator object.
 442 */
 443typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
 444
 445struct ref_iterator_vtable {
 446        ref_iterator_advance_fn *advance;
 447        ref_iterator_peel_fn *peel;
 448        ref_iterator_abort_fn *abort;
 449};
 450
 451/*
 452 * current_ref_iter is a performance hack: when iterating over
 453 * references using the for_each_ref*() functions, current_ref_iter is
 454 * set to the reference iterator before calling the callback function.
 455 * If the callback function calls peel_ref(), then peel_ref() first
 456 * checks whether the reference to be peeled is the one referred to by
 457 * the iterator (it usually is) and if so, asks the iterator for the
 458 * peeled version of the reference if it is available. This avoids a
 459 * refname lookup in a common case. current_ref_iter is set to NULL
 460 * when the iteration is over.
 461 */
 462extern struct ref_iterator *current_ref_iter;
 463
 464/*
 465 * The common backend for the for_each_*ref* functions. Call fn for
 466 * each reference in iter. If the iterator itself ever returns
 467 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
 468 * the iteration and return that value. Otherwise, return 0. In any
 469 * case, free the iterator when done. This function is basically an
 470 * adapter between the callback style of reference iteration and the
 471 * iterator style.
 472 */
 473int do_for_each_ref_iterator(struct ref_iterator *iter,
 474                             each_ref_fn fn, void *cb_data);
 475
 476/*
 477 * Only include per-worktree refs in a do_for_each_ref*() iteration.
 478 * Normally this will be used with a files ref_store, since that's
 479 * where all reference backends will presumably store their
 480 * per-worktree refs.
 481 */
 482#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
 483
 484struct ref_store;
 485
 486/* refs backends */
 487
 488/*
 489 * Initialize the ref_store for the specified submodule, or for the
 490 * main repository if submodule == NULL. These functions should call
 491 * base_ref_store_init() to initialize the shared part of the
 492 * ref_store and to record the ref_store for later lookup.
 493 */
 494typedef struct ref_store *ref_store_init_fn(const char *submodule);
 495
 496typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
 497
 498typedef int ref_transaction_commit_fn(struct ref_store *refs,
 499                                      struct ref_transaction *transaction,
 500                                      struct strbuf *err);
 501
 502typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
 503typedef int peel_ref_fn(struct ref_store *ref_store,
 504                        const char *refname, unsigned char *sha1);
 505typedef int create_symref_fn(struct ref_store *ref_store,
 506                             const char *ref_target,
 507                             const char *refs_heads_master,
 508                             const char *logmsg);
 509typedef int delete_refs_fn(struct ref_store *ref_store,
 510                           struct string_list *refnames, unsigned int flags);
 511typedef int rename_ref_fn(struct ref_store *ref_store,
 512                          const char *oldref, const char *newref,
 513                          const char *logmsg);
 514
 515/*
 516 * Iterate over the references in the specified ref_store that are
 517 * within find_containing_dir(prefix). If prefix is NULL or the empty
 518 * string, iterate over all references in the submodule.
 519 */
 520typedef struct ref_iterator *ref_iterator_begin_fn(
 521                struct ref_store *ref_store,
 522                const char *prefix, unsigned int flags);
 523
 524/* reflog functions */
 525
 526/*
 527 * Iterate over the references in the specified ref_store that have a
 528 * reflog. The refs are iterated over in arbitrary order.
 529 */
 530typedef struct ref_iterator *reflog_iterator_begin_fn(
 531                struct ref_store *ref_store);
 532
 533typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
 534                                   const char *refname,
 535                                   each_reflog_ent_fn fn,
 536                                   void *cb_data);
 537typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
 538                                           const char *refname,
 539                                           each_reflog_ent_fn fn,
 540                                           void *cb_data);
 541typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
 542typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
 543                             int force_create, struct strbuf *err);
 544typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
 545typedef int reflog_expire_fn(struct ref_store *ref_store,
 546                             const char *refname, const unsigned char *sha1,
 547                             unsigned int flags,
 548                             reflog_expiry_prepare_fn prepare_fn,
 549                             reflog_expiry_should_prune_fn should_prune_fn,
 550                             reflog_expiry_cleanup_fn cleanup_fn,
 551                             void *policy_cb_data);
 552
 553/*
 554 * Read a reference from the specified reference store, non-recursively.
 555 * Set type to describe the reference, and:
 556 *
 557 * - If refname is the name of a normal reference, fill in sha1
 558 *   (leaving referent unchanged).
 559 *
 560 * - If refname is the name of a symbolic reference, write the full
 561 *   name of the reference to which it refers (e.g.
 562 *   "refs/heads/master") to referent and set the REF_ISSYMREF bit in
 563 *   type (leaving sha1 unchanged). The caller is responsible for
 564 *   validating that referent is a valid reference name.
 565 *
 566 * WARNING: refname might be used as part of a filename, so it is
 567 * important from a security standpoint that it be safe in the sense
 568 * of refname_is_safe(). Moreover, for symrefs this function sets
 569 * referent to whatever the repository says, which might not be a
 570 * properly-formatted or even safe reference name. NEITHER INPUT NOR
 571 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
 572 *
 573 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
 574 * and return -1. If the ref exists but is neither a symbolic ref nor
 575 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to
 576 * EINVAL, and return -1. If there is another error reading the ref,
 577 * set errno appropriately and return -1.
 578 *
 579 * Backend-specific flags might be set in type as well, regardless of
 580 * outcome.
 581 *
 582 * It is OK for refname to point into referent. If so:
 583 *
 584 * - if the function succeeds with REF_ISSYMREF, referent will be
 585 *   overwritten and the memory formerly pointed to by it might be
 586 *   changed or even freed.
 587 *
 588 * - in all other cases, referent will be untouched, and therefore
 589 *   refname will still be valid and unchanged.
 590 */
 591typedef int read_raw_ref_fn(struct ref_store *ref_store,
 592                            const char *refname, unsigned char *sha1,
 593                            struct strbuf *referent, unsigned int *type);
 594
 595typedef int verify_refname_available_fn(struct ref_store *ref_store,
 596                                        const char *newname,
 597                                        const struct string_list *extras,
 598                                        const struct string_list *skip,
 599                                        struct strbuf *err);
 600
 601struct ref_storage_be {
 602        struct ref_storage_be *next;
 603        const char *name;
 604        ref_store_init_fn *init;
 605        ref_init_db_fn *init_db;
 606        ref_transaction_commit_fn *transaction_commit;
 607        ref_transaction_commit_fn *initial_transaction_commit;
 608
 609        pack_refs_fn *pack_refs;
 610        peel_ref_fn *peel_ref;
 611        create_symref_fn *create_symref;
 612        delete_refs_fn *delete_refs;
 613        rename_ref_fn *rename_ref;
 614
 615        ref_iterator_begin_fn *iterator_begin;
 616        read_raw_ref_fn *read_raw_ref;
 617        verify_refname_available_fn *verify_refname_available;
 618
 619        reflog_iterator_begin_fn *reflog_iterator_begin;
 620        for_each_reflog_ent_fn *for_each_reflog_ent;
 621        for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
 622        reflog_exists_fn *reflog_exists;
 623        create_reflog_fn *create_reflog;
 624        delete_reflog_fn *delete_reflog;
 625        reflog_expire_fn *reflog_expire;
 626};
 627
 628extern struct ref_storage_be refs_be_files;
 629
 630/*
 631 * A representation of the reference store for the main repository or
 632 * a submodule. The ref_store instances for submodules are kept in a
 633 * linked list.
 634 */
 635struct ref_store {
 636        /* The backend describing this ref_store's storage scheme: */
 637        const struct ref_storage_be *be;
 638};
 639
 640/*
 641 * Fill in the generic part of refs and add it to our collection of
 642 * reference stores.
 643 */
 644void base_ref_store_init(struct ref_store *refs,
 645                         const struct ref_storage_be *be);
 646
 647/*
 648 * Return the ref_store instance for the specified submodule. For the
 649 * main repository, use submodule==NULL; such a call cannot fail. For
 650 * a submodule, the submodule must exist and be a nonbare repository,
 651 * otherwise return NULL. If the requested reference store has not yet
 652 * been initialized, initialize it first.
 653 *
 654 * For backwards compatibility, submodule=="" is treated the same as
 655 * submodule==NULL.
 656 */
 657struct ref_store *get_ref_store(const char *submodule);
 658
 659const char *resolve_ref_recursively(struct ref_store *refs,
 660                                    const char *refname,
 661                                    int resolve_flags,
 662                                    unsigned char *sha1, int *flags);
 663
 664#endif /* REFS_REFS_INTERNAL_H */