1#include "cache.h"
2#include "notes.h"
3#include "blob.h"
4#include "tree.h"
5#include "utf8.h"
6#include "strbuf.h"
7#include "tree-walk.h"
8#include "string-list.h"
9#include "refs.h"
10
11/*
12 * Use a non-balancing simple 16-tree structure with struct int_node as
13 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
14 * 16-array of pointers to its children.
15 * The bottom 2 bits of each pointer is used to identify the pointer type
16 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
17 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
18 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
19 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
20 *
21 * The root node is a statically allocated struct int_node.
22 */
23struct int_node {
24 void *a[16];
25};
26
27/*
28 * Leaf nodes come in two variants, note entries and subtree entries,
29 * distinguished by the LSb of the leaf node pointer (see above).
30 * As a note entry, the key is the SHA1 of the referenced object, and the
31 * value is the SHA1 of the note object.
32 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
33 * referenced object, using the last byte of the key to store the length of
34 * the prefix. The value is the SHA1 of the tree object containing the notes
35 * subtree.
36 */
37struct leaf_node {
38 unsigned char key_sha1[20];
39 unsigned char val_sha1[20];
40};
41
42/*
43 * A notes tree may contain entries that are not notes, and that do not follow
44 * the naming conventions of notes. There are typically none/few of these, but
45 * we still need to keep track of them. Keep a simple linked list sorted alpha-
46 * betically on the non-note path. The list is populated when parsing tree
47 * objects in load_subtree(), and the non-notes are correctly written back into
48 * the tree objects produced by write_notes_tree().
49 */
50struct non_note {
51 struct non_note *next; /* grounded (last->next == NULL) */
52 char *path;
53 unsigned int mode;
54 unsigned char sha1[20];
55};
56
57#define PTR_TYPE_NULL 0
58#define PTR_TYPE_INTERNAL 1
59#define PTR_TYPE_NOTE 2
60#define PTR_TYPE_SUBTREE 3
61
62#define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
63#define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
64#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
65
66#define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
67
68#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
69 (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
70
71struct notes_tree default_notes_tree;
72
73static struct string_list display_notes_refs;
74static struct notes_tree **display_notes_trees;
75
76static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
77 struct int_node *node, unsigned int n);
78
79/*
80 * Search the tree until the appropriate location for the given key is found:
81 * 1. Start at the root node, with n = 0
82 * 2. If a[0] at the current level is a matching subtree entry, unpack that
83 * subtree entry and remove it; restart search at the current level.
84 * 3. Use the nth nibble of the key as an index into a:
85 * - If a[n] is an int_node, recurse from #2 into that node and increment n
86 * - If a matching subtree entry, unpack that subtree entry (and remove it);
87 * restart search at the current level.
88 * - Otherwise, we have found one of the following:
89 * - a subtree entry which does not match the key
90 * - a note entry which may or may not match the key
91 * - an unused leaf node (NULL)
92 * In any case, set *tree and *n, and return pointer to the tree location.
93 */
94static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
95 unsigned char *n, const unsigned char *key_sha1)
96{
97 struct leaf_node *l;
98 unsigned char i;
99 void *p = (*tree)->a[0];
100
101 if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
102 l = (struct leaf_node *) CLR_PTR_TYPE(p);
103 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
104 /* unpack tree and resume search */
105 (*tree)->a[0] = NULL;
106 load_subtree(t, l, *tree, *n);
107 free(l);
108 return note_tree_search(t, tree, n, key_sha1);
109 }
110 }
111
112 i = GET_NIBBLE(*n, key_sha1);
113 p = (*tree)->a[i];
114 switch (GET_PTR_TYPE(p)) {
115 case PTR_TYPE_INTERNAL:
116 *tree = CLR_PTR_TYPE(p);
117 (*n)++;
118 return note_tree_search(t, tree, n, key_sha1);
119 case PTR_TYPE_SUBTREE:
120 l = (struct leaf_node *) CLR_PTR_TYPE(p);
121 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
122 /* unpack tree and resume search */
123 (*tree)->a[i] = NULL;
124 load_subtree(t, l, *tree, *n);
125 free(l);
126 return note_tree_search(t, tree, n, key_sha1);
127 }
128 /* fall through */
129 default:
130 return &((*tree)->a[i]);
131 }
132}
133
134/*
135 * To find a leaf_node:
136 * Search to the tree location appropriate for the given key:
137 * If a note entry with matching key, return the note entry, else return NULL.
138 */
139static struct leaf_node *note_tree_find(struct notes_tree *t,
140 struct int_node *tree, unsigned char n,
141 const unsigned char *key_sha1)
142{
143 void **p = note_tree_search(t, &tree, &n, key_sha1);
144 if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
145 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
146 if (!hashcmp(key_sha1, l->key_sha1))
147 return l;
148 }
149 return NULL;
150}
151
152/*
153 * How to consolidate an int_node:
154 * If there are > 1 non-NULL entries, give up and return non-zero.
155 * Otherwise replace the int_node at the given index in the given parent node
156 * with the only entry (or a NULL entry if no entries) from the given tree,
157 * and return 0.
158 */
159static int note_tree_consolidate(struct int_node *tree,
160 struct int_node *parent, unsigned char index)
161{
162 unsigned int i;
163 void *p = NULL;
164
165 assert(tree && parent);
166 assert(CLR_PTR_TYPE(parent->a[index]) == tree);
167
168 for (i = 0; i < 16; i++) {
169 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
170 if (p) /* more than one entry */
171 return -2;
172 p = tree->a[i];
173 }
174 }
175
176 /* replace tree with p in parent[index] */
177 parent->a[index] = p;
178 free(tree);
179 return 0;
180}
181
182/*
183 * To remove a leaf_node:
184 * Search to the tree location appropriate for the given leaf_node's key:
185 * - If location does not hold a matching entry, abort and do nothing.
186 * - Copy the matching entry's value into the given entry.
187 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
188 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
189 */
190static void note_tree_remove(struct notes_tree *t,
191 struct int_node *tree, unsigned char n,
192 struct leaf_node *entry)
193{
194 struct leaf_node *l;
195 struct int_node *parent_stack[20];
196 unsigned char i, j;
197 void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
198
199 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
200 if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
201 return; /* type mismatch, nothing to remove */
202 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
203 if (hashcmp(l->key_sha1, entry->key_sha1))
204 return; /* key mismatch, nothing to remove */
205
206 /* we have found a matching entry */
207 hashcpy(entry->val_sha1, l->val_sha1);
208 free(l);
209 *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
210
211 /* consolidate this tree level, and parent levels, if possible */
212 if (!n)
213 return; /* cannot consolidate top level */
214 /* first, build stack of ancestors between root and current node */
215 parent_stack[0] = t->root;
216 for (i = 0; i < n; i++) {
217 j = GET_NIBBLE(i, entry->key_sha1);
218 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
219 }
220 assert(i == n && parent_stack[i] == tree);
221 /* next, unwind stack until note_tree_consolidate() is done */
222 while (i > 0 &&
223 !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
224 GET_NIBBLE(i - 1, entry->key_sha1)))
225 i--;
226}
227
228/*
229 * To insert a leaf_node:
230 * Search to the tree location appropriate for the given leaf_node's key:
231 * - If location is unused (NULL), store the tweaked pointer directly there
232 * - If location holds a note entry that matches the note-to-be-inserted, then
233 * combine the two notes (by calling the given combine_notes function).
234 * - If location holds a note entry that matches the subtree-to-be-inserted,
235 * then unpack the subtree-to-be-inserted into the location.
236 * - If location holds a matching subtree entry, unpack the subtree at that
237 * location, and restart the insert operation from that level.
238 * - Else, create a new int_node, holding both the node-at-location and the
239 * node-to-be-inserted, and store the new int_node into the location.
240 */
241static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
242 unsigned char n, struct leaf_node *entry, unsigned char type,
243 combine_notes_fn combine_notes)
244{
245 struct int_node *new_node;
246 struct leaf_node *l;
247 void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
248 int ret = 0;
249
250 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
251 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
252 switch (GET_PTR_TYPE(*p)) {
253 case PTR_TYPE_NULL:
254 assert(!*p);
255 if (is_null_sha1(entry->val_sha1))
256 free(entry);
257 else
258 *p = SET_PTR_TYPE(entry, type);
259 return 0;
260 case PTR_TYPE_NOTE:
261 switch (type) {
262 case PTR_TYPE_NOTE:
263 if (!hashcmp(l->key_sha1, entry->key_sha1)) {
264 /* skip concatenation if l == entry */
265 if (!hashcmp(l->val_sha1, entry->val_sha1))
266 return 0;
267
268 ret = combine_notes(l->val_sha1,
269 entry->val_sha1);
270 if (!ret && is_null_sha1(l->val_sha1))
271 note_tree_remove(t, tree, n, entry);
272 free(entry);
273 return ret;
274 }
275 break;
276 case PTR_TYPE_SUBTREE:
277 if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
278 entry->key_sha1)) {
279 /* unpack 'entry' */
280 load_subtree(t, entry, tree, n);
281 free(entry);
282 return 0;
283 }
284 break;
285 }
286 break;
287 case PTR_TYPE_SUBTREE:
288 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
289 /* unpack 'l' and restart insert */
290 *p = NULL;
291 load_subtree(t, l, tree, n);
292 free(l);
293 return note_tree_insert(t, tree, n, entry, type,
294 combine_notes);
295 }
296 break;
297 }
298
299 /* non-matching leaf_node */
300 assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
301 GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
302 if (is_null_sha1(entry->val_sha1)) { /* skip insertion of empty note */
303 free(entry);
304 return 0;
305 }
306 new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
307 ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
308 combine_notes);
309 if (ret)
310 return ret;
311 *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
312 return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
313}
314
315/* Free the entire notes data contained in the given tree */
316static void note_tree_free(struct int_node *tree)
317{
318 unsigned int i;
319 for (i = 0; i < 16; i++) {
320 void *p = tree->a[i];
321 switch (GET_PTR_TYPE(p)) {
322 case PTR_TYPE_INTERNAL:
323 note_tree_free(CLR_PTR_TYPE(p));
324 /* fall through */
325 case PTR_TYPE_NOTE:
326 case PTR_TYPE_SUBTREE:
327 free(CLR_PTR_TYPE(p));
328 }
329 }
330}
331
332/*
333 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
334 * - hex - Partial SHA1 segment in ASCII hex format
335 * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40
336 * - sha1 - Partial SHA1 value is written here
337 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
338 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
339 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
340 * Pads sha1 with NULs up to sha1_len (not included in returned length).
341 */
342static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
343 unsigned char *sha1, unsigned int sha1_len)
344{
345 unsigned int i, len = hex_len >> 1;
346 if (hex_len % 2 != 0 || len > sha1_len)
347 return -1;
348 for (i = 0; i < len; i++) {
349 unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
350 if (val & ~0xff)
351 return -1;
352 *sha1++ = val;
353 hex += 2;
354 }
355 for (; i < sha1_len; i++)
356 *sha1++ = 0;
357 return len;
358}
359
360static int non_note_cmp(const struct non_note *a, const struct non_note *b)
361{
362 return strcmp(a->path, b->path);
363}
364
365/* note: takes ownership of path string */
366static void add_non_note(struct notes_tree *t, char *path,
367 unsigned int mode, const unsigned char *sha1)
368{
369 struct non_note *p = t->prev_non_note, *n;
370 n = (struct non_note *) xmalloc(sizeof(struct non_note));
371 n->next = NULL;
372 n->path = path;
373 n->mode = mode;
374 hashcpy(n->sha1, sha1);
375 t->prev_non_note = n;
376
377 if (!t->first_non_note) {
378 t->first_non_note = n;
379 return;
380 }
381
382 if (non_note_cmp(p, n) < 0)
383 ; /* do nothing */
384 else if (non_note_cmp(t->first_non_note, n) <= 0)
385 p = t->first_non_note;
386 else {
387 /* n sorts before t->first_non_note */
388 n->next = t->first_non_note;
389 t->first_non_note = n;
390 return;
391 }
392
393 /* n sorts equal or after p */
394 while (p->next && non_note_cmp(p->next, n) <= 0)
395 p = p->next;
396
397 if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
398 assert(strcmp(p->path, n->path) == 0);
399 p->mode = n->mode;
400 hashcpy(p->sha1, n->sha1);
401 free(n);
402 t->prev_non_note = p;
403 return;
404 }
405
406 /* n sorts between p and p->next */
407 n->next = p->next;
408 p->next = n;
409}
410
411static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
412 struct int_node *node, unsigned int n)
413{
414 unsigned char object_sha1[20];
415 unsigned int prefix_len;
416 void *buf;
417 struct tree_desc desc;
418 struct name_entry entry;
419 int len, path_len;
420 unsigned char type;
421 struct leaf_node *l;
422
423 buf = fill_tree_descriptor(&desc, subtree->val_sha1);
424 if (!buf)
425 die("Could not read %s for notes-index",
426 sha1_to_hex(subtree->val_sha1));
427
428 prefix_len = subtree->key_sha1[19];
429 assert(prefix_len * 2 >= n);
430 memcpy(object_sha1, subtree->key_sha1, prefix_len);
431 while (tree_entry(&desc, &entry)) {
432 path_len = strlen(entry.path);
433 len = get_sha1_hex_segment(entry.path, path_len,
434 object_sha1 + prefix_len, 20 - prefix_len);
435 if (len < 0)
436 goto handle_non_note; /* entry.path is not a SHA1 */
437 len += prefix_len;
438
439 /*
440 * If object SHA1 is complete (len == 20), assume note object
441 * If object SHA1 is incomplete (len < 20), and current
442 * component consists of 2 hex chars, assume note subtree
443 */
444 if (len <= 20) {
445 type = PTR_TYPE_NOTE;
446 l = (struct leaf_node *)
447 xcalloc(1, sizeof(struct leaf_node));
448 hashcpy(l->key_sha1, object_sha1);
449 hashcpy(l->val_sha1, entry.sha1);
450 if (len < 20) {
451 if (!S_ISDIR(entry.mode) || path_len != 2)
452 goto handle_non_note; /* not subtree */
453 l->key_sha1[19] = (unsigned char) len;
454 type = PTR_TYPE_SUBTREE;
455 }
456 if (note_tree_insert(t, node, n, l, type,
457 combine_notes_concatenate))
458 die("Failed to load %s %s into notes tree "
459 "from %s",
460 type == PTR_TYPE_NOTE ? "note" : "subtree",
461 sha1_to_hex(l->key_sha1), t->ref);
462 }
463 continue;
464
465handle_non_note:
466 /*
467 * Determine full path for this non-note entry:
468 * The filename is already found in entry.path, but the
469 * directory part of the path must be deduced from the subtree
470 * containing this entry. We assume here that the overall notes
471 * tree follows a strict byte-based progressive fanout
472 * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not
473 * e.g. 4/36 fanout). This means that if a non-note is found at
474 * path "dead/beef", the following code will register it as
475 * being found on "de/ad/beef".
476 * On the other hand, if you use such non-obvious non-note
477 * paths in the middle of a notes tree, you deserve what's
478 * coming to you ;). Note that for non-notes that are not
479 * SHA1-like at the top level, there will be no problems.
480 *
481 * To conclude, it is strongly advised to make sure non-notes
482 * have at least one non-hex character in the top-level path
483 * component.
484 */
485 {
486 struct strbuf non_note_path = STRBUF_INIT;
487 const char *q = sha1_to_hex(subtree->key_sha1);
488 int i;
489 for (i = 0; i < prefix_len; i++) {
490 strbuf_addch(&non_note_path, *q++);
491 strbuf_addch(&non_note_path, *q++);
492 strbuf_addch(&non_note_path, '/');
493 }
494 strbuf_addstr(&non_note_path, entry.path);
495 add_non_note(t, strbuf_detach(&non_note_path, NULL),
496 entry.mode, entry.sha1);
497 }
498 }
499 free(buf);
500}
501
502/*
503 * Determine optimal on-disk fanout for this part of the notes tree
504 *
505 * Given a (sub)tree and the level in the internal tree structure, determine
506 * whether or not the given existing fanout should be expanded for this
507 * (sub)tree.
508 *
509 * Values of the 'fanout' variable:
510 * - 0: No fanout (all notes are stored directly in the root notes tree)
511 * - 1: 2/38 fanout
512 * - 2: 2/2/36 fanout
513 * - 3: 2/2/2/34 fanout
514 * etc.
515 */
516static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
517 unsigned char fanout)
518{
519 /*
520 * The following is a simple heuristic that works well in practice:
521 * For each even-numbered 16-tree level (remember that each on-disk
522 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
523 * entries at that tree level. If all of them are either int_nodes or
524 * subtree entries, then there are likely plenty of notes below this
525 * level, so we return an incremented fanout.
526 */
527 unsigned int i;
528 if ((n % 2) || (n > 2 * fanout))
529 return fanout;
530 for (i = 0; i < 16; i++) {
531 switch (GET_PTR_TYPE(tree->a[i])) {
532 case PTR_TYPE_SUBTREE:
533 case PTR_TYPE_INTERNAL:
534 continue;
535 default:
536 return fanout;
537 }
538 }
539 return fanout + 1;
540}
541
542/* hex SHA1 + 19 * '/' + NUL */
543#define FANOUT_PATH_MAX 40 + 19 + 1
544
545static void construct_path_with_fanout(const unsigned char *sha1,
546 unsigned char fanout, char *path)
547{
548 unsigned int i = 0, j = 0;
549 const char *hex_sha1 = sha1_to_hex(sha1);
550 assert(fanout < 20);
551 while (fanout) {
552 path[i++] = hex_sha1[j++];
553 path[i++] = hex_sha1[j++];
554 path[i++] = '/';
555 fanout--;
556 }
557 xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_sha1 + j);
558}
559
560static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
561 unsigned char n, unsigned char fanout, int flags,
562 each_note_fn fn, void *cb_data)
563{
564 unsigned int i;
565 void *p;
566 int ret = 0;
567 struct leaf_node *l;
568 static char path[FANOUT_PATH_MAX];
569
570 fanout = determine_fanout(tree, n, fanout);
571 for (i = 0; i < 16; i++) {
572redo:
573 p = tree->a[i];
574 switch (GET_PTR_TYPE(p)) {
575 case PTR_TYPE_INTERNAL:
576 /* recurse into int_node */
577 ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
578 fanout, flags, fn, cb_data);
579 break;
580 case PTR_TYPE_SUBTREE:
581 l = (struct leaf_node *) CLR_PTR_TYPE(p);
582 /*
583 * Subtree entries in the note tree represent parts of
584 * the note tree that have not yet been explored. There
585 * is a direct relationship between subtree entries at
586 * level 'n' in the tree, and the 'fanout' variable:
587 * Subtree entries at level 'n <= 2 * fanout' should be
588 * preserved, since they correspond exactly to a fanout
589 * directory in the on-disk structure. However, subtree
590 * entries at level 'n > 2 * fanout' should NOT be
591 * preserved, but rather consolidated into the above
592 * notes tree level. We achieve this by unconditionally
593 * unpacking subtree entries that exist below the
594 * threshold level at 'n = 2 * fanout'.
595 */
596 if (n <= 2 * fanout &&
597 flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
598 /* invoke callback with subtree */
599 unsigned int path_len =
600 l->key_sha1[19] * 2 + fanout;
601 assert(path_len < FANOUT_PATH_MAX - 1);
602 construct_path_with_fanout(l->key_sha1, fanout,
603 path);
604 /* Create trailing slash, if needed */
605 if (path[path_len - 1] != '/')
606 path[path_len++] = '/';
607 path[path_len] = '\0';
608 ret = fn(l->key_sha1, l->val_sha1, path,
609 cb_data);
610 }
611 if (n > fanout * 2 ||
612 !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
613 /* unpack subtree and resume traversal */
614 tree->a[i] = NULL;
615 load_subtree(t, l, tree, n);
616 free(l);
617 goto redo;
618 }
619 break;
620 case PTR_TYPE_NOTE:
621 l = (struct leaf_node *) CLR_PTR_TYPE(p);
622 construct_path_with_fanout(l->key_sha1, fanout, path);
623 ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
624 break;
625 }
626 if (ret)
627 return ret;
628 }
629 return 0;
630}
631
632struct tree_write_stack {
633 struct tree_write_stack *next;
634 struct strbuf buf;
635 char path[2]; /* path to subtree in next, if any */
636};
637
638static inline int matches_tree_write_stack(struct tree_write_stack *tws,
639 const char *full_path)
640{
641 return full_path[0] == tws->path[0] &&
642 full_path[1] == tws->path[1] &&
643 full_path[2] == '/';
644}
645
646static void write_tree_entry(struct strbuf *buf, unsigned int mode,
647 const char *path, unsigned int path_len, const
648 unsigned char *sha1)
649{
650 strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
651 strbuf_add(buf, sha1, 20);
652}
653
654static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
655 const char *path)
656{
657 struct tree_write_stack *n;
658 assert(!tws->next);
659 assert(tws->path[0] == '\0' && tws->path[1] == '\0');
660 n = (struct tree_write_stack *)
661 xmalloc(sizeof(struct tree_write_stack));
662 n->next = NULL;
663 strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
664 n->path[0] = n->path[1] = '\0';
665 tws->next = n;
666 tws->path[0] = path[0];
667 tws->path[1] = path[1];
668}
669
670static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
671{
672 int ret;
673 struct tree_write_stack *n = tws->next;
674 unsigned char s[20];
675 if (n) {
676 ret = tree_write_stack_finish_subtree(n);
677 if (ret)
678 return ret;
679 ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
680 if (ret)
681 return ret;
682 strbuf_release(&n->buf);
683 free(n);
684 tws->next = NULL;
685 write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
686 tws->path[0] = tws->path[1] = '\0';
687 }
688 return 0;
689}
690
691static int write_each_note_helper(struct tree_write_stack *tws,
692 const char *path, unsigned int mode,
693 const unsigned char *sha1)
694{
695 size_t path_len = strlen(path);
696 unsigned int n = 0;
697 int ret;
698
699 /* Determine common part of tree write stack */
700 while (tws && 3 * n < path_len &&
701 matches_tree_write_stack(tws, path + 3 * n)) {
702 n++;
703 tws = tws->next;
704 }
705
706 /* tws point to last matching tree_write_stack entry */
707 ret = tree_write_stack_finish_subtree(tws);
708 if (ret)
709 return ret;
710
711 /* Start subtrees needed to satisfy path */
712 while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
713 tree_write_stack_init_subtree(tws, path + 3 * n);
714 n++;
715 tws = tws->next;
716 }
717
718 /* There should be no more directory components in the given path */
719 assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
720
721 /* Finally add given entry to the current tree object */
722 write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
723 sha1);
724
725 return 0;
726}
727
728struct write_each_note_data {
729 struct tree_write_stack *root;
730 struct non_note *next_non_note;
731};
732
733static int write_each_non_note_until(const char *note_path,
734 struct write_each_note_data *d)
735{
736 struct non_note *n = d->next_non_note;
737 int cmp = 0, ret;
738 while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
739 if (note_path && cmp == 0)
740 ; /* do nothing, prefer note to non-note */
741 else {
742 ret = write_each_note_helper(d->root, n->path, n->mode,
743 n->sha1);
744 if (ret)
745 return ret;
746 }
747 n = n->next;
748 }
749 d->next_non_note = n;
750 return 0;
751}
752
753static int write_each_note(const unsigned char *object_sha1,
754 const unsigned char *note_sha1, char *note_path,
755 void *cb_data)
756{
757 struct write_each_note_data *d =
758 (struct write_each_note_data *) cb_data;
759 size_t note_path_len = strlen(note_path);
760 unsigned int mode = 0100644;
761
762 if (note_path[note_path_len - 1] == '/') {
763 /* subtree entry */
764 note_path_len--;
765 note_path[note_path_len] = '\0';
766 mode = 040000;
767 }
768 assert(note_path_len <= 40 + 19);
769
770 /* Weave non-note entries into note entries */
771 return write_each_non_note_until(note_path, d) ||
772 write_each_note_helper(d->root, note_path, mode, note_sha1);
773}
774
775struct note_delete_list {
776 struct note_delete_list *next;
777 const unsigned char *sha1;
778};
779
780static int prune_notes_helper(const unsigned char *object_sha1,
781 const unsigned char *note_sha1, char *note_path,
782 void *cb_data)
783{
784 struct note_delete_list **l = (struct note_delete_list **) cb_data;
785 struct note_delete_list *n;
786
787 if (has_sha1_file(object_sha1))
788 return 0; /* nothing to do for this note */
789
790 /* failed to find object => prune this note */
791 n = (struct note_delete_list *) xmalloc(sizeof(*n));
792 n->next = *l;
793 n->sha1 = object_sha1;
794 *l = n;
795 return 0;
796}
797
798int combine_notes_concatenate(unsigned char *cur_sha1,
799 const unsigned char *new_sha1)
800{
801 char *cur_msg = NULL, *new_msg = NULL, *buf;
802 unsigned long cur_len, new_len, buf_len;
803 enum object_type cur_type, new_type;
804 int ret;
805
806 /* read in both note blob objects */
807 if (!is_null_sha1(new_sha1))
808 new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
809 if (!new_msg || !new_len || new_type != OBJ_BLOB) {
810 free(new_msg);
811 return 0;
812 }
813 if (!is_null_sha1(cur_sha1))
814 cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
815 if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
816 free(cur_msg);
817 free(new_msg);
818 hashcpy(cur_sha1, new_sha1);
819 return 0;
820 }
821
822 /* we will separate the notes by two newlines anyway */
823 if (cur_msg[cur_len - 1] == '\n')
824 cur_len--;
825
826 /* concatenate cur_msg and new_msg into buf */
827 buf_len = cur_len + 2 + new_len;
828 buf = (char *) xmalloc(buf_len);
829 memcpy(buf, cur_msg, cur_len);
830 buf[cur_len] = '\n';
831 buf[cur_len + 1] = '\n';
832 memcpy(buf + cur_len + 2, new_msg, new_len);
833 free(cur_msg);
834 free(new_msg);
835
836 /* create a new blob object from buf */
837 ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
838 free(buf);
839 return ret;
840}
841
842int combine_notes_overwrite(unsigned char *cur_sha1,
843 const unsigned char *new_sha1)
844{
845 hashcpy(cur_sha1, new_sha1);
846 return 0;
847}
848
849int combine_notes_ignore(unsigned char *cur_sha1,
850 const unsigned char *new_sha1)
851{
852 return 0;
853}
854
855/*
856 * Add the lines from the named object to list, with trailing
857 * newlines removed.
858 */
859static int string_list_add_note_lines(struct string_list *list,
860 const unsigned char *sha1)
861{
862 char *data;
863 unsigned long len;
864 enum object_type t;
865
866 if (is_null_sha1(sha1))
867 return 0;
868
869 /* read_sha1_file NUL-terminates */
870 data = read_sha1_file(sha1, &t, &len);
871 if (t != OBJ_BLOB || !data || !len) {
872 free(data);
873 return t != OBJ_BLOB || !data;
874 }
875
876 /*
877 * If the last line of the file is EOL-terminated, this will
878 * add an empty string to the list. But it will be removed
879 * later, along with any empty strings that came from empty
880 * lines within the file.
881 */
882 string_list_split(list, data, '\n', -1);
883 free(data);
884 return 0;
885}
886
887static int string_list_join_lines_helper(struct string_list_item *item,
888 void *cb_data)
889{
890 struct strbuf *buf = cb_data;
891 strbuf_addstr(buf, item->string);
892 strbuf_addch(buf, '\n');
893 return 0;
894}
895
896int combine_notes_cat_sort_uniq(unsigned char *cur_sha1,
897 const unsigned char *new_sha1)
898{
899 struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
900 struct strbuf buf = STRBUF_INIT;
901 int ret = 1;
902
903 /* read both note blob objects into unique_lines */
904 if (string_list_add_note_lines(&sort_uniq_list, cur_sha1))
905 goto out;
906 if (string_list_add_note_lines(&sort_uniq_list, new_sha1))
907 goto out;
908 string_list_remove_empty_items(&sort_uniq_list, 0);
909 string_list_sort(&sort_uniq_list);
910 string_list_remove_duplicates(&sort_uniq_list, 0);
911
912 /* create a new blob object from sort_uniq_list */
913 if (for_each_string_list(&sort_uniq_list,
914 string_list_join_lines_helper, &buf))
915 goto out;
916
917 ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1);
918
919out:
920 strbuf_release(&buf);
921 string_list_clear(&sort_uniq_list, 0);
922 return ret;
923}
924
925static int string_list_add_one_ref(const char *refname, const struct object_id *oid,
926 int flag, void *cb)
927{
928 struct string_list *refs = cb;
929 if (!unsorted_string_list_has_string(refs, refname))
930 string_list_append(refs, refname);
931 return 0;
932}
933
934/*
935 * The list argument must have strdup_strings set on it.
936 */
937void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
938{
939 assert(list->strdup_strings);
940 if (has_glob_specials(glob)) {
941 for_each_glob_ref(string_list_add_one_ref, glob, list);
942 } else {
943 unsigned char sha1[20];
944 if (get_sha1(glob, sha1))
945 warning("notes ref %s is invalid", glob);
946 if (!unsorted_string_list_has_string(list, glob))
947 string_list_append(list, glob);
948 }
949}
950
951void string_list_add_refs_from_colon_sep(struct string_list *list,
952 const char *globs)
953{
954 struct string_list split = STRING_LIST_INIT_NODUP;
955 char *globs_copy = xstrdup(globs);
956 int i;
957
958 string_list_split_in_place(&split, globs_copy, ':', -1);
959 string_list_remove_empty_items(&split, 0);
960
961 for (i = 0; i < split.nr; i++)
962 string_list_add_refs_by_glob(list, split.items[i].string);
963
964 string_list_clear(&split, 0);
965 free(globs_copy);
966}
967
968static int notes_display_config(const char *k, const char *v, void *cb)
969{
970 int *load_refs = cb;
971
972 if (*load_refs && !strcmp(k, "notes.displayref")) {
973 if (!v)
974 config_error_nonbool(k);
975 string_list_add_refs_by_glob(&display_notes_refs, v);
976 }
977
978 return 0;
979}
980
981const char *default_notes_ref(void)
982{
983 const char *notes_ref = NULL;
984 if (!notes_ref)
985 notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
986 if (!notes_ref)
987 notes_ref = notes_ref_name; /* value of core.notesRef config */
988 if (!notes_ref)
989 notes_ref = GIT_NOTES_DEFAULT_REF;
990 return notes_ref;
991}
992
993void init_notes(struct notes_tree *t, const char *notes_ref,
994 combine_notes_fn combine_notes, int flags)
995{
996 unsigned char sha1[20], object_sha1[20];
997 unsigned mode;
998 struct leaf_node root_tree;
999
1000 if (!t)
1001 t = &default_notes_tree;
1002 assert(!t->initialized);
1003
1004 if (!notes_ref)
1005 notes_ref = default_notes_ref();
1006
1007 if (!combine_notes)
1008 combine_notes = combine_notes_concatenate;
1009
1010 t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1011 t->first_non_note = NULL;
1012 t->prev_non_note = NULL;
1013 t->ref = xstrdup_or_null(notes_ref);
1014 t->combine_notes = combine_notes;
1015 t->initialized = 1;
1016 t->dirty = 0;
1017
1018 if (flags & NOTES_INIT_EMPTY || !notes_ref ||
1019 read_ref(notes_ref, object_sha1))
1020 return;
1021 if (get_tree_entry(object_sha1, "", sha1, &mode))
1022 die("Failed to read notes tree referenced by %s (%s)",
1023 notes_ref, sha1_to_hex(object_sha1));
1024
1025 hashclr(root_tree.key_sha1);
1026 hashcpy(root_tree.val_sha1, sha1);
1027 load_subtree(t, &root_tree, t->root, 0);
1028}
1029
1030struct notes_tree **load_notes_trees(struct string_list *refs)
1031{
1032 struct string_list_item *item;
1033 int counter = 0;
1034 struct notes_tree **trees;
1035 ALLOC_ARRAY(trees, refs->nr + 1);
1036 for_each_string_list_item(item, refs) {
1037 struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1038 init_notes(t, item->string, combine_notes_ignore, 0);
1039 trees[counter++] = t;
1040 }
1041 trees[counter] = NULL;
1042 return trees;
1043}
1044
1045void init_display_notes(struct display_notes_opt *opt)
1046{
1047 char *display_ref_env;
1048 int load_config_refs = 0;
1049 display_notes_refs.strdup_strings = 1;
1050
1051 assert(!display_notes_trees);
1052
1053 if (!opt || opt->use_default_notes > 0 ||
1054 (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1055 string_list_append(&display_notes_refs, default_notes_ref());
1056 display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1057 if (display_ref_env) {
1058 string_list_add_refs_from_colon_sep(&display_notes_refs,
1059 display_ref_env);
1060 load_config_refs = 0;
1061 } else
1062 load_config_refs = 1;
1063 }
1064
1065 git_config(notes_display_config, &load_config_refs);
1066
1067 if (opt) {
1068 struct string_list_item *item;
1069 for_each_string_list_item(item, &opt->extra_notes_refs)
1070 string_list_add_refs_by_glob(&display_notes_refs,
1071 item->string);
1072 }
1073
1074 display_notes_trees = load_notes_trees(&display_notes_refs);
1075 string_list_clear(&display_notes_refs, 0);
1076}
1077
1078int add_note(struct notes_tree *t, const unsigned char *object_sha1,
1079 const unsigned char *note_sha1, combine_notes_fn combine_notes)
1080{
1081 struct leaf_node *l;
1082
1083 if (!t)
1084 t = &default_notes_tree;
1085 assert(t->initialized);
1086 t->dirty = 1;
1087 if (!combine_notes)
1088 combine_notes = t->combine_notes;
1089 l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1090 hashcpy(l->key_sha1, object_sha1);
1091 hashcpy(l->val_sha1, note_sha1);
1092 return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1093}
1094
1095int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1096{
1097 struct leaf_node l;
1098
1099 if (!t)
1100 t = &default_notes_tree;
1101 assert(t->initialized);
1102 hashcpy(l.key_sha1, object_sha1);
1103 hashclr(l.val_sha1);
1104 note_tree_remove(t, t->root, 0, &l);
1105 if (is_null_sha1(l.val_sha1)) /* no note was removed */
1106 return 1;
1107 t->dirty = 1;
1108 return 0;
1109}
1110
1111const unsigned char *get_note(struct notes_tree *t,
1112 const unsigned char *object_sha1)
1113{
1114 struct leaf_node *found;
1115
1116 if (!t)
1117 t = &default_notes_tree;
1118 assert(t->initialized);
1119 found = note_tree_find(t, t->root, 0, object_sha1);
1120 return found ? found->val_sha1 : NULL;
1121}
1122
1123int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1124 void *cb_data)
1125{
1126 if (!t)
1127 t = &default_notes_tree;
1128 assert(t->initialized);
1129 return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1130}
1131
1132int write_notes_tree(struct notes_tree *t, unsigned char *result)
1133{
1134 struct tree_write_stack root;
1135 struct write_each_note_data cb_data;
1136 int ret;
1137
1138 if (!t)
1139 t = &default_notes_tree;
1140 assert(t->initialized);
1141
1142 /* Prepare for traversal of current notes tree */
1143 root.next = NULL; /* last forward entry in list is grounded */
1144 strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
1145 root.path[0] = root.path[1] = '\0';
1146 cb_data.root = &root;
1147 cb_data.next_non_note = t->first_non_note;
1148
1149 /* Write tree objects representing current notes tree */
1150 ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1151 FOR_EACH_NOTE_YIELD_SUBTREES,
1152 write_each_note, &cb_data) ||
1153 write_each_non_note_until(NULL, &cb_data) ||
1154 tree_write_stack_finish_subtree(&root) ||
1155 write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
1156 strbuf_release(&root.buf);
1157 return ret;
1158}
1159
1160void prune_notes(struct notes_tree *t, int flags)
1161{
1162 struct note_delete_list *l = NULL;
1163
1164 if (!t)
1165 t = &default_notes_tree;
1166 assert(t->initialized);
1167
1168 for_each_note(t, 0, prune_notes_helper, &l);
1169
1170 while (l) {
1171 if (flags & NOTES_PRUNE_VERBOSE)
1172 printf("%s\n", sha1_to_hex(l->sha1));
1173 if (!(flags & NOTES_PRUNE_DRYRUN))
1174 remove_note(t, l->sha1);
1175 l = l->next;
1176 }
1177}
1178
1179void free_notes(struct notes_tree *t)
1180{
1181 if (!t)
1182 t = &default_notes_tree;
1183 if (t->root)
1184 note_tree_free(t->root);
1185 free(t->root);
1186 while (t->first_non_note) {
1187 t->prev_non_note = t->first_non_note->next;
1188 free(t->first_non_note->path);
1189 free(t->first_non_note);
1190 t->first_non_note = t->prev_non_note;
1191 }
1192 free(t->ref);
1193 memset(t, 0, sizeof(struct notes_tree));
1194}
1195
1196/*
1197 * Fill the given strbuf with the notes associated with the given object.
1198 *
1199 * If the given notes_tree structure is not initialized, it will be auto-
1200 * initialized to the default value (see documentation for init_notes() above).
1201 * If the given notes_tree is NULL, the internal/default notes_tree will be
1202 * used instead.
1203 *
1204 * (raw != 0) gives the %N userformat; otherwise, the note message is given
1205 * for human consumption.
1206 */
1207static void format_note(struct notes_tree *t, const unsigned char *object_sha1,
1208 struct strbuf *sb, const char *output_encoding, int raw)
1209{
1210 static const char utf8[] = "utf-8";
1211 const unsigned char *sha1;
1212 char *msg, *msg_p;
1213 unsigned long linelen, msglen;
1214 enum object_type type;
1215
1216 if (!t)
1217 t = &default_notes_tree;
1218 if (!t->initialized)
1219 init_notes(t, NULL, NULL, 0);
1220
1221 sha1 = get_note(t, object_sha1);
1222 if (!sha1)
1223 return;
1224
1225 if (!(msg = read_sha1_file(sha1, &type, &msglen)) || type != OBJ_BLOB) {
1226 free(msg);
1227 return;
1228 }
1229
1230 if (output_encoding && *output_encoding &&
1231 !is_encoding_utf8(output_encoding)) {
1232 char *reencoded = reencode_string(msg, output_encoding, utf8);
1233 if (reencoded) {
1234 free(msg);
1235 msg = reencoded;
1236 msglen = strlen(msg);
1237 }
1238 }
1239
1240 /* we will end the annotation by a newline anyway */
1241 if (msglen && msg[msglen - 1] == '\n')
1242 msglen--;
1243
1244 if (!raw) {
1245 const char *ref = t->ref;
1246 if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1247 strbuf_addstr(sb, "\nNotes:\n");
1248 } else {
1249 if (starts_with(ref, "refs/"))
1250 ref += 5;
1251 if (starts_with(ref, "notes/"))
1252 ref += 6;
1253 strbuf_addf(sb, "\nNotes (%s):\n", ref);
1254 }
1255 }
1256
1257 for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1258 linelen = strchrnul(msg_p, '\n') - msg_p;
1259
1260 if (!raw)
1261 strbuf_addstr(sb, " ");
1262 strbuf_add(sb, msg_p, linelen);
1263 strbuf_addch(sb, '\n');
1264 }
1265
1266 free(msg);
1267}
1268
1269void format_display_notes(const unsigned char *object_sha1,
1270 struct strbuf *sb, const char *output_encoding, int raw)
1271{
1272 int i;
1273 assert(display_notes_trees);
1274 for (i = 0; display_notes_trees[i]; i++)
1275 format_note(display_notes_trees[i], object_sha1, sb,
1276 output_encoding, raw);
1277}
1278
1279int copy_note(struct notes_tree *t,
1280 const unsigned char *from_obj, const unsigned char *to_obj,
1281 int force, combine_notes_fn combine_notes)
1282{
1283 const unsigned char *note = get_note(t, from_obj);
1284 const unsigned char *existing_note = get_note(t, to_obj);
1285
1286 if (!force && existing_note)
1287 return 1;
1288
1289 if (note)
1290 return add_note(t, to_obj, note, combine_notes);
1291 else if (existing_note)
1292 return add_note(t, to_obj, null_sha1, combine_notes);
1293
1294 return 0;
1295}
1296
1297void expand_notes_ref(struct strbuf *sb)
1298{
1299 if (starts_with(sb->buf, "refs/notes/"))
1300 return; /* we're happy */
1301 else if (starts_with(sb->buf, "notes/"))
1302 strbuf_insert(sb, 0, "refs/", 5);
1303 else
1304 strbuf_insert(sb, 0, "refs/notes/", 11);
1305}