1#include"cache.h" 2#include"pack-revindex.h" 3#include"object-store.h" 4 5/* 6 * Pack index for existing packs give us easy access to the offsets into 7 * corresponding pack file where each object's data starts, but the entries 8 * do not store the size of the compressed representation (uncompressed 9 * size is easily available by examining the pack entry header). It is 10 * also rather expensive to find the sha1 for an object given its offset. 11 * 12 * The pack index file is sorted by object name mapping to offset; 13 * this revindex array is a list of offset/index_nr pairs 14 * ordered by offset, so if you know the offset of an object, next offset 15 * is where its packed representation ends and the index_nr can be used to 16 * get the object sha1 from the main index. 17 */ 18 19/* 20 * This is a least-significant-digit radix sort. 21 * 22 * It sorts each of the "n" items in "entries" by its offset field. The "max" 23 * parameter must be at least as large as the largest offset in the array, 24 * and lets us quit the sort early. 25 */ 26static voidsort_revindex(struct revindex_entry *entries,unsigned n, off_t max) 27{ 28/* 29 * We use a "digit" size of 16 bits. That keeps our memory 30 * usage reasonable, and we can generally (for a 4G or smaller 31 * packfile) quit after two rounds of radix-sorting. 32 */ 33#define DIGIT_SIZE (16) 34#define BUCKETS (1 << DIGIT_SIZE) 35/* 36 * We want to know the bucket that a[i] will go into when we are using 37 * the digit that is N bits from the (least significant) end. 38 */ 39#define BUCKET_FOR(a, i, bits) (((a)[(i)].offset >> (bits)) & (BUCKETS-1)) 40 41/* 42 * We need O(n) temporary storage. Rather than do an extra copy of the 43 * partial results into "entries", we sort back and forth between the 44 * real array and temporary storage. In each iteration of the loop, we 45 * keep track of them with alias pointers, always sorting from "from" 46 * to "to". 47 */ 48struct revindex_entry *tmp, *from, *to; 49int bits; 50unsigned*pos; 51 52ALLOC_ARRAY(pos, BUCKETS); 53ALLOC_ARRAY(tmp, n); 54 from = entries; 55 to = tmp; 56 57/* 58 * If (max >> bits) is zero, then we know that the radix digit we are 59 * on (and any higher) will be zero for all entries, and our loop will 60 * be a no-op, as everybody lands in the same zero-th bucket. 61 */ 62for(bits =0; max >> bits; bits += DIGIT_SIZE) { 63unsigned i; 64 65memset(pos,0, BUCKETS *sizeof(*pos)); 66 67/* 68 * We want pos[i] to store the index of the last element that 69 * will go in bucket "i" (actually one past the last element). 70 * To do this, we first count the items that will go in each 71 * bucket, which gives us a relative offset from the last 72 * bucket. We can then cumulatively add the index from the 73 * previous bucket to get the true index. 74 */ 75for(i =0; i < n; i++) 76 pos[BUCKET_FOR(from, i, bits)]++; 77for(i =1; i < BUCKETS; i++) 78 pos[i] += pos[i-1]; 79 80/* 81 * Now we can drop the elements into their correct buckets (in 82 * our temporary array). We iterate the pos counter backwards 83 * to avoid using an extra index to count up. And since we are 84 * going backwards there, we must also go backwards through the 85 * array itself, to keep the sort stable. 86 * 87 * Note that we use an unsigned iterator to make sure we can 88 * handle 2^32-1 objects, even on a 32-bit system. But this 89 * means we cannot use the more obvious "i >= 0" loop condition 90 * for counting backwards, and must instead check for 91 * wrap-around with UINT_MAX. 92 */ 93for(i = n -1; i != UINT_MAX; i--) 94 to[--pos[BUCKET_FOR(from, i, bits)]] = from[i]; 95 96/* 97 * Now "to" contains the most sorted list, so we swap "from" and 98 * "to" for the next iteration. 99 */ 100SWAP(from, to); 101} 102 103/* 104 * If we ended with our data in the original array, great. If not, 105 * we have to move it back from the temporary storage. 106 */ 107if(from != entries) 108COPY_ARRAY(entries, tmp, n); 109free(tmp); 110free(pos); 111 112#undef BUCKET_FOR 113#undef BUCKETS 114#undef DIGIT_SIZE 115} 116 117/* 118 * Ordered list of offsets of objects in the pack. 119 */ 120static voidcreate_pack_revindex(struct packed_git *p) 121{ 122unsigned num_ent = p->num_objects; 123unsigned i; 124const char*index = p->index_data; 125const unsigned hashsz = the_hash_algo->rawsz; 126 127ALLOC_ARRAY(p->revindex, num_ent +1); 128 index +=4*256; 129 130if(p->index_version >1) { 131const uint32_t*off_32 = 132(uint32_t*)(index +8+ p->num_objects * (hashsz +4)); 133const uint32_t*off_64 = off_32 + p->num_objects; 134for(i =0; i < num_ent; i++) { 135uint32_t off =ntohl(*off_32++); 136if(!(off &0x80000000)) { 137 p->revindex[i].offset = off; 138}else{ 139 p->revindex[i].offset =get_be64(off_64); 140 off_64 +=2; 141} 142 p->revindex[i].nr = i; 143} 144}else{ 145for(i =0; i < num_ent; i++) { 146uint32_t hl = *((uint32_t*)(index + (hashsz +4) * i)); 147 p->revindex[i].offset =ntohl(hl); 148 p->revindex[i].nr = i; 149} 150} 151 152/* 153 * This knows the pack format -- the hash trailer 154 * follows immediately after the last object data. 155 */ 156 p->revindex[num_ent].offset = p->pack_size - hashsz; 157 p->revindex[num_ent].nr = -1; 158sort_revindex(p->revindex, num_ent, p->pack_size); 159} 160 161voidload_pack_revindex(struct packed_git *p) 162{ 163if(!p->revindex) 164create_pack_revindex(p); 165} 166 167intfind_revindex_position(struct packed_git *p, off_t ofs) 168{ 169int lo =0; 170int hi = p->num_objects +1; 171struct revindex_entry *revindex = p->revindex; 172 173do{ 174unsigned mi = lo + (hi - lo) /2; 175if(revindex[mi].offset == ofs) { 176return mi; 177}else if(ofs < revindex[mi].offset) 178 hi = mi; 179else 180 lo = mi +1; 181}while(lo < hi); 182 183error("bad offset for revindex"); 184return-1; 185} 186 187struct revindex_entry *find_pack_revindex(struct packed_git *p, off_t ofs) 188{ 189int pos; 190 191load_pack_revindex(p); 192 pos =find_revindex_position(p, ofs); 193 194if(pos <0) 195return NULL; 196 197return p->revindex + pos; 198}