wrapper.con commit t9003: become resilient to GETTEXT_POISON (f9b3242)
   1/*
   2 * Various trivial helper wrappers around standard functions
   3 */
   4#include "cache.h"
   5
   6static void do_nothing(size_t size)
   7{
   8}
   9
  10static void (*try_to_free_routine)(size_t size) = do_nothing;
  11
  12static int memory_limit_check(size_t size, int gentle)
  13{
  14        static size_t limit = 0;
  15        if (!limit) {
  16                limit = git_env_ulong("GIT_ALLOC_LIMIT", 0);
  17                if (!limit)
  18                        limit = SIZE_MAX;
  19        }
  20        if (size > limit) {
  21                if (gentle) {
  22                        error("attempting to allocate %"PRIuMAX" over limit %"PRIuMAX,
  23                              (uintmax_t)size, (uintmax_t)limit);
  24                        return -1;
  25                } else
  26                        die("attempting to allocate %"PRIuMAX" over limit %"PRIuMAX,
  27                            (uintmax_t)size, (uintmax_t)limit);
  28        }
  29        return 0;
  30}
  31
  32try_to_free_t set_try_to_free_routine(try_to_free_t routine)
  33{
  34        try_to_free_t old = try_to_free_routine;
  35        if (!routine)
  36                routine = do_nothing;
  37        try_to_free_routine = routine;
  38        return old;
  39}
  40
  41char *xstrdup(const char *str)
  42{
  43        char *ret = strdup(str);
  44        if (!ret) {
  45                try_to_free_routine(strlen(str) + 1);
  46                ret = strdup(str);
  47                if (!ret)
  48                        die("Out of memory, strdup failed");
  49        }
  50        return ret;
  51}
  52
  53static void *do_xmalloc(size_t size, int gentle)
  54{
  55        void *ret;
  56
  57        if (memory_limit_check(size, gentle))
  58                return NULL;
  59        ret = malloc(size);
  60        if (!ret && !size)
  61                ret = malloc(1);
  62        if (!ret) {
  63                try_to_free_routine(size);
  64                ret = malloc(size);
  65                if (!ret && !size)
  66                        ret = malloc(1);
  67                if (!ret) {
  68                        if (!gentle)
  69                                die("Out of memory, malloc failed (tried to allocate %lu bytes)",
  70                                    (unsigned long)size);
  71                        else {
  72                                error("Out of memory, malloc failed (tried to allocate %lu bytes)",
  73                                      (unsigned long)size);
  74                                return NULL;
  75                        }
  76                }
  77        }
  78#ifdef XMALLOC_POISON
  79        memset(ret, 0xA5, size);
  80#endif
  81        return ret;
  82}
  83
  84void *xmalloc(size_t size)
  85{
  86        return do_xmalloc(size, 0);
  87}
  88
  89static void *do_xmallocz(size_t size, int gentle)
  90{
  91        void *ret;
  92        if (unsigned_add_overflows(size, 1)) {
  93                if (gentle) {
  94                        error("Data too large to fit into virtual memory space.");
  95                        return NULL;
  96                } else
  97                        die("Data too large to fit into virtual memory space.");
  98        }
  99        ret = do_xmalloc(size + 1, gentle);
 100        if (ret)
 101                ((char*)ret)[size] = 0;
 102        return ret;
 103}
 104
 105void *xmallocz(size_t size)
 106{
 107        return do_xmallocz(size, 0);
 108}
 109
 110void *xmallocz_gently(size_t size)
 111{
 112        return do_xmallocz(size, 1);
 113}
 114
 115/*
 116 * xmemdupz() allocates (len + 1) bytes of memory, duplicates "len" bytes of
 117 * "data" to the allocated memory, zero terminates the allocated memory,
 118 * and returns a pointer to the allocated memory. If the allocation fails,
 119 * the program dies.
 120 */
 121void *xmemdupz(const void *data, size_t len)
 122{
 123        return memcpy(xmallocz(len), data, len);
 124}
 125
 126char *xstrndup(const char *str, size_t len)
 127{
 128        char *p = memchr(str, '\0', len);
 129        return xmemdupz(str, p ? p - str : len);
 130}
 131
 132void *xrealloc(void *ptr, size_t size)
 133{
 134        void *ret;
 135
 136        memory_limit_check(size, 0);
 137        ret = realloc(ptr, size);
 138        if (!ret && !size)
 139                ret = realloc(ptr, 1);
 140        if (!ret) {
 141                try_to_free_routine(size);
 142                ret = realloc(ptr, size);
 143                if (!ret && !size)
 144                        ret = realloc(ptr, 1);
 145                if (!ret)
 146                        die("Out of memory, realloc failed");
 147        }
 148        return ret;
 149}
 150
 151void *xcalloc(size_t nmemb, size_t size)
 152{
 153        void *ret;
 154
 155        if (unsigned_mult_overflows(nmemb, size))
 156                die("data too large to fit into virtual memory space");
 157
 158        memory_limit_check(size * nmemb, 0);
 159        ret = calloc(nmemb, size);
 160        if (!ret && (!nmemb || !size))
 161                ret = calloc(1, 1);
 162        if (!ret) {
 163                try_to_free_routine(nmemb * size);
 164                ret = calloc(nmemb, size);
 165                if (!ret && (!nmemb || !size))
 166                        ret = calloc(1, 1);
 167                if (!ret)
 168                        die("Out of memory, calloc failed");
 169        }
 170        return ret;
 171}
 172
 173/*
 174 * Limit size of IO chunks, because huge chunks only cause pain.  OS X
 175 * 64-bit is buggy, returning EINVAL if len >= INT_MAX; and even in
 176 * the absence of bugs, large chunks can result in bad latencies when
 177 * you decide to kill the process.
 178 *
 179 * We pick 8 MiB as our default, but if the platform defines SSIZE_MAX
 180 * that is smaller than that, clip it to SSIZE_MAX, as a call to
 181 * read(2) or write(2) larger than that is allowed to fail.  As the last
 182 * resort, we allow a port to pass via CFLAGS e.g. "-DMAX_IO_SIZE=value"
 183 * to override this, if the definition of SSIZE_MAX given by the platform
 184 * is broken.
 185 */
 186#ifndef MAX_IO_SIZE
 187# define MAX_IO_SIZE_DEFAULT (8*1024*1024)
 188# if defined(SSIZE_MAX) && (SSIZE_MAX < MAX_IO_SIZE_DEFAULT)
 189#  define MAX_IO_SIZE SSIZE_MAX
 190# else
 191#  define MAX_IO_SIZE MAX_IO_SIZE_DEFAULT
 192# endif
 193#endif
 194
 195/**
 196 * xopen() is the same as open(), but it die()s if the open() fails.
 197 */
 198int xopen(const char *path, int oflag, ...)
 199{
 200        mode_t mode = 0;
 201        va_list ap;
 202
 203        /*
 204         * va_arg() will have undefined behavior if the specified type is not
 205         * compatible with the argument type. Since integers are promoted to
 206         * ints, we fetch the next argument as an int, and then cast it to a
 207         * mode_t to avoid undefined behavior.
 208         */
 209        va_start(ap, oflag);
 210        if (oflag & O_CREAT)
 211                mode = va_arg(ap, int);
 212        va_end(ap);
 213
 214        for (;;) {
 215                int fd = open(path, oflag, mode);
 216                if (fd >= 0)
 217                        return fd;
 218                if (errno == EINTR)
 219                        continue;
 220
 221                if ((oflag & O_RDWR) == O_RDWR)
 222                        die_errno(_("could not open '%s' for reading and writing"), path);
 223                else if ((oflag & O_WRONLY) == O_WRONLY)
 224                        die_errno(_("could not open '%s' for writing"), path);
 225                else
 226                        die_errno(_("could not open '%s' for reading"), path);
 227        }
 228}
 229
 230/*
 231 * xread() is the same a read(), but it automatically restarts read()
 232 * operations with a recoverable error (EAGAIN and EINTR). xread()
 233 * DOES NOT GUARANTEE that "len" bytes is read even if the data is available.
 234 */
 235ssize_t xread(int fd, void *buf, size_t len)
 236{
 237        ssize_t nr;
 238        if (len > MAX_IO_SIZE)
 239            len = MAX_IO_SIZE;
 240        while (1) {
 241                nr = read(fd, buf, len);
 242                if (nr < 0) {
 243                        if (errno == EINTR)
 244                                continue;
 245                        if (errno == EAGAIN || errno == EWOULDBLOCK) {
 246                                struct pollfd pfd;
 247                                pfd.events = POLLIN;
 248                                pfd.fd = fd;
 249                                /*
 250                                 * it is OK if this poll() failed; we
 251                                 * want to leave this infinite loop
 252                                 * only when read() returns with
 253                                 * success, or an expected failure,
 254                                 * which would be checked by the next
 255                                 * call to read(2).
 256                                 */
 257                                poll(&pfd, 1, -1);
 258                        }
 259                }
 260                return nr;
 261        }
 262}
 263
 264/*
 265 * xwrite() is the same a write(), but it automatically restarts write()
 266 * operations with a recoverable error (EAGAIN and EINTR). xwrite() DOES NOT
 267 * GUARANTEE that "len" bytes is written even if the operation is successful.
 268 */
 269ssize_t xwrite(int fd, const void *buf, size_t len)
 270{
 271        ssize_t nr;
 272        if (len > MAX_IO_SIZE)
 273            len = MAX_IO_SIZE;
 274        while (1) {
 275                nr = write(fd, buf, len);
 276                if ((nr < 0) && (errno == EAGAIN || errno == EINTR))
 277                        continue;
 278                return nr;
 279        }
 280}
 281
 282/*
 283 * xpread() is the same as pread(), but it automatically restarts pread()
 284 * operations with a recoverable error (EAGAIN and EINTR). xpread() DOES
 285 * NOT GUARANTEE that "len" bytes is read even if the data is available.
 286 */
 287ssize_t xpread(int fd, void *buf, size_t len, off_t offset)
 288{
 289        ssize_t nr;
 290        if (len > MAX_IO_SIZE)
 291                len = MAX_IO_SIZE;
 292        while (1) {
 293                nr = pread(fd, buf, len, offset);
 294                if ((nr < 0) && (errno == EAGAIN || errno == EINTR))
 295                        continue;
 296                return nr;
 297        }
 298}
 299
 300ssize_t read_in_full(int fd, void *buf, size_t count)
 301{
 302        char *p = buf;
 303        ssize_t total = 0;
 304
 305        while (count > 0) {
 306                ssize_t loaded = xread(fd, p, count);
 307                if (loaded < 0)
 308                        return -1;
 309                if (loaded == 0)
 310                        return total;
 311                count -= loaded;
 312                p += loaded;
 313                total += loaded;
 314        }
 315
 316        return total;
 317}
 318
 319ssize_t write_in_full(int fd, const void *buf, size_t count)
 320{
 321        const char *p = buf;
 322        ssize_t total = 0;
 323
 324        while (count > 0) {
 325                ssize_t written = xwrite(fd, p, count);
 326                if (written < 0)
 327                        return -1;
 328                if (!written) {
 329                        errno = ENOSPC;
 330                        return -1;
 331                }
 332                count -= written;
 333                p += written;
 334                total += written;
 335        }
 336
 337        return total;
 338}
 339
 340ssize_t pread_in_full(int fd, void *buf, size_t count, off_t offset)
 341{
 342        char *p = buf;
 343        ssize_t total = 0;
 344
 345        while (count > 0) {
 346                ssize_t loaded = xpread(fd, p, count, offset);
 347                if (loaded < 0)
 348                        return -1;
 349                if (loaded == 0)
 350                        return total;
 351                count -= loaded;
 352                p += loaded;
 353                total += loaded;
 354                offset += loaded;
 355        }
 356
 357        return total;
 358}
 359
 360int xdup(int fd)
 361{
 362        int ret = dup(fd);
 363        if (ret < 0)
 364                die_errno("dup failed");
 365        return ret;
 366}
 367
 368/**
 369 * xfopen() is the same as fopen(), but it die()s if the fopen() fails.
 370 */
 371FILE *xfopen(const char *path, const char *mode)
 372{
 373        for (;;) {
 374                FILE *fp = fopen(path, mode);
 375                if (fp)
 376                        return fp;
 377                if (errno == EINTR)
 378                        continue;
 379
 380                if (*mode && mode[1] == '+')
 381                        die_errno(_("could not open '%s' for reading and writing"), path);
 382                else if (*mode == 'w' || *mode == 'a')
 383                        die_errno(_("could not open '%s' for writing"), path);
 384                else
 385                        die_errno(_("could not open '%s' for reading"), path);
 386        }
 387}
 388
 389FILE *xfdopen(int fd, const char *mode)
 390{
 391        FILE *stream = fdopen(fd, mode);
 392        if (stream == NULL)
 393                die_errno("Out of memory? fdopen failed");
 394        return stream;
 395}
 396
 397FILE *fopen_for_writing(const char *path)
 398{
 399        FILE *ret = fopen(path, "w");
 400
 401        if (!ret && errno == EPERM) {
 402                if (!unlink(path))
 403                        ret = fopen(path, "w");
 404                else
 405                        errno = EPERM;
 406        }
 407        return ret;
 408}
 409
 410int xmkstemp(char *template)
 411{
 412        int fd;
 413        char origtemplate[PATH_MAX];
 414        strlcpy(origtemplate, template, sizeof(origtemplate));
 415
 416        fd = mkstemp(template);
 417        if (fd < 0) {
 418                int saved_errno = errno;
 419                const char *nonrelative_template;
 420
 421                if (strlen(template) != strlen(origtemplate))
 422                        template = origtemplate;
 423
 424                nonrelative_template = absolute_path(template);
 425                errno = saved_errno;
 426                die_errno("Unable to create temporary file '%s'",
 427                        nonrelative_template);
 428        }
 429        return fd;
 430}
 431
 432/* git_mkstemp() - create tmp file honoring TMPDIR variable */
 433int git_mkstemp(char *path, size_t len, const char *template)
 434{
 435        const char *tmp;
 436        size_t n;
 437
 438        tmp = getenv("TMPDIR");
 439        if (!tmp)
 440                tmp = "/tmp";
 441        n = snprintf(path, len, "%s/%s", tmp, template);
 442        if (len <= n) {
 443                errno = ENAMETOOLONG;
 444                return -1;
 445        }
 446        return mkstemp(path);
 447}
 448
 449/* Adapted from libiberty's mkstemp.c. */
 450
 451#undef TMP_MAX
 452#define TMP_MAX 16384
 453
 454int git_mkstemps_mode(char *pattern, int suffix_len, int mode)
 455{
 456        static const char letters[] =
 457                "abcdefghijklmnopqrstuvwxyz"
 458                "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 459                "0123456789";
 460        static const int num_letters = 62;
 461        uint64_t value;
 462        struct timeval tv;
 463        char *template;
 464        size_t len;
 465        int fd, count;
 466
 467        len = strlen(pattern);
 468
 469        if (len < 6 + suffix_len) {
 470                errno = EINVAL;
 471                return -1;
 472        }
 473
 474        if (strncmp(&pattern[len - 6 - suffix_len], "XXXXXX", 6)) {
 475                errno = EINVAL;
 476                return -1;
 477        }
 478
 479        /*
 480         * Replace pattern's XXXXXX characters with randomness.
 481         * Try TMP_MAX different filenames.
 482         */
 483        gettimeofday(&tv, NULL);
 484        value = ((size_t)(tv.tv_usec << 16)) ^ tv.tv_sec ^ getpid();
 485        template = &pattern[len - 6 - suffix_len];
 486        for (count = 0; count < TMP_MAX; ++count) {
 487                uint64_t v = value;
 488                /* Fill in the random bits. */
 489                template[0] = letters[v % num_letters]; v /= num_letters;
 490                template[1] = letters[v % num_letters]; v /= num_letters;
 491                template[2] = letters[v % num_letters]; v /= num_letters;
 492                template[3] = letters[v % num_letters]; v /= num_letters;
 493                template[4] = letters[v % num_letters]; v /= num_letters;
 494                template[5] = letters[v % num_letters]; v /= num_letters;
 495
 496                fd = open(pattern, O_CREAT | O_EXCL | O_RDWR, mode);
 497                if (fd >= 0)
 498                        return fd;
 499                /*
 500                 * Fatal error (EPERM, ENOSPC etc).
 501                 * It doesn't make sense to loop.
 502                 */
 503                if (errno != EEXIST)
 504                        break;
 505                /*
 506                 * This is a random value.  It is only necessary that
 507                 * the next TMP_MAX values generated by adding 7777 to
 508                 * VALUE are different with (module 2^32).
 509                 */
 510                value += 7777;
 511        }
 512        /* We return the null string if we can't find a unique file name.  */
 513        pattern[0] = '\0';
 514        return -1;
 515}
 516
 517int git_mkstemp_mode(char *pattern, int mode)
 518{
 519        /* mkstemp is just mkstemps with no suffix */
 520        return git_mkstemps_mode(pattern, 0, mode);
 521}
 522
 523#ifdef NO_MKSTEMPS
 524int gitmkstemps(char *pattern, int suffix_len)
 525{
 526        return git_mkstemps_mode(pattern, suffix_len, 0600);
 527}
 528#endif
 529
 530int xmkstemp_mode(char *template, int mode)
 531{
 532        int fd;
 533        char origtemplate[PATH_MAX];
 534        strlcpy(origtemplate, template, sizeof(origtemplate));
 535
 536        fd = git_mkstemp_mode(template, mode);
 537        if (fd < 0) {
 538                int saved_errno = errno;
 539                const char *nonrelative_template;
 540
 541                if (!template[0])
 542                        template = origtemplate;
 543
 544                nonrelative_template = absolute_path(template);
 545                errno = saved_errno;
 546                die_errno("Unable to create temporary file '%s'",
 547                        nonrelative_template);
 548        }
 549        return fd;
 550}
 551
 552static int warn_if_unremovable(const char *op, const char *file, int rc)
 553{
 554        int err;
 555        if (!rc || errno == ENOENT)
 556                return 0;
 557        err = errno;
 558        warning_errno("unable to %s %s", op, file);
 559        errno = err;
 560        return rc;
 561}
 562
 563int unlink_or_msg(const char *file, struct strbuf *err)
 564{
 565        int rc = unlink(file);
 566
 567        assert(err);
 568
 569        if (!rc || errno == ENOENT)
 570                return 0;
 571
 572        strbuf_addf(err, "unable to unlink %s: %s",
 573                    file, strerror(errno));
 574        return -1;
 575}
 576
 577int unlink_or_warn(const char *file)
 578{
 579        return warn_if_unremovable("unlink", file, unlink(file));
 580}
 581
 582int rmdir_or_warn(const char *file)
 583{
 584        return warn_if_unremovable("rmdir", file, rmdir(file));
 585}
 586
 587int remove_or_warn(unsigned int mode, const char *file)
 588{
 589        return S_ISGITLINK(mode) ? rmdir_or_warn(file) : unlink_or_warn(file);
 590}
 591
 592void warn_on_inaccessible(const char *path)
 593{
 594        warning_errno(_("unable to access '%s'"), path);
 595}
 596
 597static int access_error_is_ok(int err, unsigned flag)
 598{
 599        return err == ENOENT || err == ENOTDIR ||
 600                ((flag & ACCESS_EACCES_OK) && err == EACCES);
 601}
 602
 603int access_or_warn(const char *path, int mode, unsigned flag)
 604{
 605        int ret = access(path, mode);
 606        if (ret && !access_error_is_ok(errno, flag))
 607                warn_on_inaccessible(path);
 608        return ret;
 609}
 610
 611int access_or_die(const char *path, int mode, unsigned flag)
 612{
 613        int ret = access(path, mode);
 614        if (ret && !access_error_is_ok(errno, flag))
 615                die_errno(_("unable to access '%s'"), path);
 616        return ret;
 617}
 618
 619char *xgetcwd(void)
 620{
 621        struct strbuf sb = STRBUF_INIT;
 622        if (strbuf_getcwd(&sb))
 623                die_errno(_("unable to get current working directory"));
 624        return strbuf_detach(&sb, NULL);
 625}
 626
 627int xsnprintf(char *dst, size_t max, const char *fmt, ...)
 628{
 629        va_list ap;
 630        int len;
 631
 632        va_start(ap, fmt);
 633        len = vsnprintf(dst, max, fmt, ap);
 634        va_end(ap);
 635
 636        if (len < 0)
 637                die("BUG: your snprintf is broken");
 638        if (len >= max)
 639                die("BUG: attempt to snprintf into too-small buffer");
 640        return len;
 641}
 642
 643static int write_file_v(const char *path, int fatal,
 644                        const char *fmt, va_list params)
 645{
 646        struct strbuf sb = STRBUF_INIT;
 647        int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
 648        if (fd < 0) {
 649                if (fatal)
 650                        die_errno(_("could not open %s for writing"), path);
 651                return -1;
 652        }
 653        strbuf_vaddf(&sb, fmt, params);
 654        strbuf_complete_line(&sb);
 655        if (write_in_full(fd, sb.buf, sb.len) != sb.len) {
 656                int err = errno;
 657                close(fd);
 658                strbuf_release(&sb);
 659                errno = err;
 660                if (fatal)
 661                        die_errno(_("could not write to %s"), path);
 662                return -1;
 663        }
 664        strbuf_release(&sb);
 665        if (close(fd)) {
 666                if (fatal)
 667                        die_errno(_("could not close %s"), path);
 668                return -1;
 669        }
 670        return 0;
 671}
 672
 673int write_file(const char *path, const char *fmt, ...)
 674{
 675        int status;
 676        va_list params;
 677
 678        va_start(params, fmt);
 679        status = write_file_v(path, 1, fmt, params);
 680        va_end(params);
 681        return status;
 682}
 683
 684int write_file_gently(const char *path, const char *fmt, ...)
 685{
 686        int status;
 687        va_list params;
 688
 689        va_start(params, fmt);
 690        status = write_file_v(path, 0, fmt, params);
 691        va_end(params);
 692        return status;
 693}
 694
 695void sleep_millisec(int millisec)
 696{
 697        poll(NULL, 0, millisec);
 698}