hashmap.hon commit grep: recurse in-process using 'struct repository' (f9ee2fc)
   1#ifndef HASHMAP_H
   2#define HASHMAP_H
   3
   4/*
   5 * Generic implementation of hash-based key-value mappings.
   6 *
   7 * An example that maps long to a string:
   8 * For the sake of the example this allows to lookup exact values, too
   9 * (i.e. it is operated as a set, the value is part of the key)
  10 * -------------------------------------
  11 *
  12 * struct hashmap map;
  13 * struct long2string {
  14 *     struct hashmap_entry ent; // must be the first member!
  15 *     long key;
  16 *     char value[FLEX_ARRAY];   // be careful with allocating on stack!
  17 * };
  18 *
  19 * #define COMPARE_VALUE 1
  20 *
  21 * static int long2string_cmp(const struct long2string *e1,
  22 *                            const struct long2string *e2,
  23 *                            const void *keydata, const void *userdata)
  24 * {
  25 *     char *string = keydata;
  26 *     unsigned *flags = (unsigned*)userdata;
  27 *
  28 *     if (flags & COMPARE_VALUE)
  29 *         return !(e1->key == e2->key) || (keydata ?
  30 *                  strcmp(e1->value, keydata) : strcmp(e1->value, e2->value));
  31 *     else
  32 *         return !(e1->key == e2->key);
  33 * }
  34 *
  35 * int main(int argc, char **argv)
  36 * {
  37 *     long key;
  38 *     char *value, *action;
  39 *
  40 *     unsigned flags = ALLOW_DUPLICATE_KEYS;
  41 *
  42 *     hashmap_init(&map, (hashmap_cmp_fn) long2string_cmp, &flags, 0);
  43 *
  44 *     while (scanf("%s %l %s", action, key, value)) {
  45 *
  46 *         if (!strcmp("add", action)) {
  47 *             struct long2string *e;
  48 *             e = malloc(sizeof(struct long2string) + strlen(value));
  49 *             hashmap_entry_init(e, memhash(&key, sizeof(long)));
  50 *             e->key = key;
  51 *             memcpy(e->value, value, strlen(value));
  52 *             hashmap_add(&map, e);
  53 *         }
  54 *
  55 *         if (!strcmp("print_all_by_key", action)) {
  56 *             flags &= ~COMPARE_VALUE;
  57 *
  58 *             struct long2string k;
  59 *             hashmap_entry_init(&k, memhash(&key, sizeof(long)));
  60 *             k.key = key;
  61 *
  62 *             struct long2string *e = hashmap_get(&map, &k, NULL);
  63 *             if (e) {
  64 *                 printf("first: %l %s\n", e->key, e->value);
  65 *                 while (e = hashmap_get_next(&map, e))
  66 *                     printf("found more: %l %s\n", e->key, e->value);
  67 *             }
  68 *         }
  69 *
  70 *         if (!strcmp("has_exact_match", action)) {
  71 *             flags |= COMPARE_VALUE;
  72 *
  73 *             struct long2string *e;
  74 *             e = malloc(sizeof(struct long2string) + strlen(value));
  75 *             hashmap_entry_init(e, memhash(&key, sizeof(long)));
  76 *             e->key = key;
  77 *             memcpy(e->value, value, strlen(value));
  78 *
  79 *             printf("%s found\n", hashmap_get(&map, e, NULL) ? "" : "not");
  80 *         }
  81 *
  82 *         if (!strcmp("has_exact_match_no_heap_alloc", action)) {
  83 *             flags |= COMPARE_VALUE;
  84 *
  85 *             struct long2string e;
  86 *             hashmap_entry_init(e, memhash(&key, sizeof(long)));
  87 *             e.key = key;
  88 *
  89 *             printf("%s found\n", hashmap_get(&map, e, value) ? "" : "not");
  90 *         }
  91 *
  92 *         if (!strcmp("end", action)) {
  93 *             hashmap_free(&map, 1);
  94 *             break;
  95 *         }
  96 *     }
  97 * }
  98 */
  99
 100/*
 101 * Ready-to-use hash functions for strings, using the FNV-1 algorithm (see
 102 * http://www.isthe.com/chongo/tech/comp/fnv).
 103 * `strhash` and `strihash` take 0-terminated strings, while `memhash` and
 104 * `memihash` operate on arbitrary-length memory.
 105 * `strihash` and `memihash` are case insensitive versions.
 106 * `memihash_cont` is a variant of `memihash` that allows a computation to be
 107 * continued with another chunk of data.
 108 */
 109extern unsigned int strhash(const char *buf);
 110extern unsigned int strihash(const char *buf);
 111extern unsigned int memhash(const void *buf, size_t len);
 112extern unsigned int memihash(const void *buf, size_t len);
 113extern unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len);
 114
 115/*
 116 * Converts a cryptographic hash (e.g. SHA-1) into an int-sized hash code
 117 * for use in hash tables. Cryptographic hashes are supposed to have
 118 * uniform distribution, so in contrast to `memhash()`, this just copies
 119 * the first `sizeof(int)` bytes without shuffling any bits. Note that
 120 * the results will be different on big-endian and little-endian
 121 * platforms, so they should not be stored or transferred over the net.
 122 */
 123static inline unsigned int sha1hash(const unsigned char *sha1)
 124{
 125        /*
 126         * Equivalent to 'return *(unsigned int *)sha1;', but safe on
 127         * platforms that don't support unaligned reads.
 128         */
 129        unsigned int hash;
 130        memcpy(&hash, sha1, sizeof(hash));
 131        return hash;
 132}
 133
 134/*
 135 * struct hashmap_entry is an opaque structure representing an entry in the
 136 * hash table, which must be used as first member of user data structures.
 137 * Ideally it should be followed by an int-sized member to prevent unused
 138 * memory on 64-bit systems due to alignment.
 139 */
 140struct hashmap_entry {
 141        /*
 142         * next points to the next entry in case of collisions (i.e. if
 143         * multiple entries map to the same bucket)
 144         */
 145        struct hashmap_entry *next;
 146
 147        /* entry's hash code */
 148        unsigned int hash;
 149};
 150
 151/*
 152 * User-supplied function to test two hashmap entries for equality. Shall
 153 * return 0 if the entries are equal.
 154 *
 155 * This function is always called with non-NULL `entry` and `entry_or_key`
 156 * parameters that have the same hash code.
 157 *
 158 * When looking up an entry, the `key` and `keydata` parameters to hashmap_get
 159 * and hashmap_remove are always passed as second `entry_or_key` and third
 160 * argument `keydata`, respectively. Otherwise, `keydata` is NULL.
 161 *
 162 * When it is too expensive to allocate a user entry (either because it is
 163 * large or varialbe sized, such that it is not on the stack), then the
 164 * relevant data to check for equality should be passed via `keydata`.
 165 * In this case `key` can be a stripped down version of the user key data
 166 * or even just a hashmap_entry having the correct hash.
 167 *
 168 * The `hashmap_cmp_fn_data` entry is the pointer given in the init function.
 169 */
 170typedef int (*hashmap_cmp_fn)(const void *hashmap_cmp_fn_data,
 171                              const void *entry, const void *entry_or_key,
 172                              const void *keydata);
 173
 174/*
 175 * struct hashmap is the hash table structure. Members can be used as follows,
 176 * but should not be modified directly.
 177 */
 178struct hashmap {
 179        struct hashmap_entry **table;
 180
 181        /* Stores the comparison function specified in `hashmap_init()`. */
 182        hashmap_cmp_fn cmpfn;
 183        const void *cmpfn_data;
 184
 185        /* total number of entries (0 means the hashmap is empty) */
 186        unsigned int size;
 187
 188        /*
 189         * tablesize is the allocated size of the hash table. A non-0 value
 190         * indicates that the hashmap is initialized. It may also be useful
 191         * for statistical purposes (i.e. `size / tablesize` is the current
 192         * load factor).
 193         */
 194        unsigned int tablesize;
 195
 196        unsigned int grow_at;
 197        unsigned int shrink_at;
 198
 199        /* See `hashmap_disallow_rehash`. */
 200        unsigned disallow_rehash : 1;
 201};
 202
 203/* hashmap functions */
 204
 205/*
 206 * Initializes a hashmap structure.
 207 *
 208 * `map` is the hashmap to initialize.
 209 *
 210 * The `equals_function` can be specified to compare two entries for equality.
 211 * If NULL, entries are considered equal if their hash codes are equal.
 212 *
 213 * The `equals_function_data` parameter can be used to provide additional data
 214 * (a callback cookie) that will be passed to `equals_function` each time it
 215 * is called. This allows a single `equals_function` to implement multiple
 216 * comparison functions.
 217 *
 218 * If the total number of entries is known in advance, the `initial_size`
 219 * parameter may be used to preallocate a sufficiently large table and thus
 220 * prevent expensive resizing. If 0, the table is dynamically resized.
 221 */
 222extern void hashmap_init(struct hashmap *map,
 223                         hashmap_cmp_fn equals_function,
 224                         const void *equals_function_data,
 225                         size_t initial_size);
 226
 227/*
 228 * Frees a hashmap structure and allocated memory.
 229 *
 230 * If `free_entries` is true, each hashmap_entry in the map is freed as well
 231 * using stdlibs free().
 232 */
 233extern void hashmap_free(struct hashmap *map, int free_entries);
 234
 235/* hashmap_entry functions */
 236
 237/*
 238 * Initializes a hashmap_entry structure.
 239 *
 240 * `entry` points to the entry to initialize.
 241 * `hash` is the hash code of the entry.
 242 *
 243 * The hashmap_entry structure does not hold references to external resources,
 244 * and it is safe to just discard it once you are done with it (i.e. if
 245 * your structure was allocated with xmalloc(), you can just free(3) it,
 246 * and if it is on stack, you can just let it go out of scope).
 247 */
 248static inline void hashmap_entry_init(void *entry, unsigned int hash)
 249{
 250        struct hashmap_entry *e = entry;
 251        e->hash = hash;
 252        e->next = NULL;
 253}
 254
 255/*
 256 * Returns the hashmap entry for the specified key, or NULL if not found.
 257 *
 258 * `map` is the hashmap structure.
 259 *
 260 * `key` is a user data structure that starts with hashmap_entry that has at
 261 * least been initialized with the proper hash code (via `hashmap_entry_init`).
 262 *
 263 * `keydata` is a data structure that holds just enough information to check
 264 * for equality to a given entry.
 265 *
 266 * If the key data is variable-sized (e.g. a FLEX_ARRAY string) or quite large,
 267 * it is undesirable to create a full-fledged entry structure on the heap and
 268 * copy all the key data into the structure.
 269 *
 270 * In this case, the `keydata` parameter can be used to pass
 271 * variable-sized key data directly to the comparison function, and the `key`
 272 * parameter can be a stripped-down, fixed size entry structure allocated on the
 273 * stack.
 274 *
 275 * If an entry with matching hash code is found, `key` and `keydata` are passed
 276 * to `hashmap_cmp_fn` to decide whether the entry matches the key.
 277 */
 278extern void *hashmap_get(const struct hashmap *map, const void *key,
 279                         const void *keydata);
 280
 281/*
 282 * Returns the hashmap entry for the specified hash code and key data,
 283 * or NULL if not found.
 284 *
 285 * `map` is the hashmap structure.
 286 * `hash` is the hash code of the entry to look up.
 287 *
 288 * If an entry with matching hash code is found, `keydata` is passed to
 289 * `hashmap_cmp_fn` to decide whether the entry matches the key. The
 290 * `entry_or_key` parameter of `hashmap_cmp_fn` points to a hashmap_entry
 291 * structure that should not be used in the comparison.
 292 */
 293static inline void *hashmap_get_from_hash(const struct hashmap *map,
 294                                          unsigned int hash,
 295                                          const void *keydata)
 296{
 297        struct hashmap_entry key;
 298        hashmap_entry_init(&key, hash);
 299        return hashmap_get(map, &key, keydata);
 300}
 301
 302/*
 303 * Returns the next equal hashmap entry, or NULL if not found. This can be
 304 * used to iterate over duplicate entries (see `hashmap_add`).
 305 *
 306 * `map` is the hashmap structure.
 307 * `entry` is the hashmap_entry to start the search from, obtained via a previous
 308 * call to `hashmap_get` or `hashmap_get_next`.
 309 */
 310extern void *hashmap_get_next(const struct hashmap *map, const void *entry);
 311
 312/*
 313 * Adds a hashmap entry. This allows to add duplicate entries (i.e.
 314 * separate values with the same key according to hashmap_cmp_fn).
 315 *
 316 * `map` is the hashmap structure.
 317 * `entry` is the entry to add.
 318 */
 319extern void hashmap_add(struct hashmap *map, void *entry);
 320
 321/*
 322 * Adds or replaces a hashmap entry. If the hashmap contains duplicate
 323 * entries equal to the specified entry, only one of them will be replaced.
 324 *
 325 * `map` is the hashmap structure.
 326 * `entry` is the entry to add or replace.
 327 * Returns the replaced entry, or NULL if not found (i.e. the entry was added).
 328 */
 329extern void *hashmap_put(struct hashmap *map, void *entry);
 330
 331/*
 332 * Removes a hashmap entry matching the specified key. If the hashmap contains
 333 * duplicate entries equal to the specified key, only one of them will be
 334 * removed. Returns the removed entry, or NULL if not found.
 335 *
 336 * Argument explanation is the same as in `hashmap_get`.
 337 */
 338extern void *hashmap_remove(struct hashmap *map, const void *key,
 339                const void *keydata);
 340
 341/*
 342 * Returns the `bucket` an entry is stored in.
 343 * Useful for multithreaded read access.
 344 */
 345int hashmap_bucket(const struct hashmap *map, unsigned int hash);
 346
 347/*
 348 * Disallow/allow rehashing of the hashmap.
 349 * This is useful if the caller knows that the hashmap needs multi-threaded
 350 * access.  The caller is still required to guard/lock searches and inserts
 351 * in a manner appropriate to their usage.  This simply prevents the table
 352 * from being unexpectedly re-mapped.
 353 *
 354 * It is up to the caller to ensure that the hashmap is initialized to a
 355 * reasonable size to prevent poor performance.
 356 *
 357 * A call to allow rehashing does not force a rehash; that might happen
 358 * with the next insert or delete.
 359 */
 360static inline void hashmap_disallow_rehash(struct hashmap *map, unsigned value)
 361{
 362        map->disallow_rehash = value;
 363}
 364
 365/*
 366 * Used to iterate over all entries of a hashmap. Note that it is
 367 * not safe to add or remove entries to the hashmap while
 368 * iterating.
 369 */
 370struct hashmap_iter {
 371        struct hashmap *map;
 372        struct hashmap_entry *next;
 373        unsigned int tablepos;
 374};
 375
 376/* Initializes a `hashmap_iter` structure. */
 377extern void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter);
 378
 379/* Returns the next hashmap_entry, or NULL if there are no more entries. */
 380extern void *hashmap_iter_next(struct hashmap_iter *iter);
 381
 382/* Initializes the iterator and returns the first entry, if any. */
 383static inline void *hashmap_iter_first(struct hashmap *map,
 384                struct hashmap_iter *iter)
 385{
 386        hashmap_iter_init(map, iter);
 387        return hashmap_iter_next(iter);
 388}
 389
 390/* String interning */
 391
 392/*
 393 * Returns the unique, interned version of the specified string or data,
 394 * similar to the `String.intern` API in Java and .NET, respectively.
 395 * Interned strings remain valid for the entire lifetime of the process.
 396 *
 397 * Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned
 398 * strings / data must not be modified or freed.
 399 *
 400 * Interned strings are best used for short strings with high probability of
 401 * duplicates.
 402 *
 403 * Uses a hashmap to store the pool of interned strings.
 404 */
 405extern const void *memintern(const void *data, size_t len);
 406static inline const char *strintern(const char *string)
 407{
 408        return memintern(string, strlen(string));
 409}
 410
 411#endif