fbd0da0ebdc5c523b7f35399a39a3b8efd373112
   1/*
   2 * GIT - The information manager from hell
   3 *
   4 * Copyright (C) Linus Torvalds, 2005
   5 */
   6#include "cache.h"
   7
   8static int stage = 0;
   9static int update = 0;
  10
  11static int unpack_tree(unsigned char *sha1)
  12{
  13        void *buffer;
  14        unsigned long size;
  15        int ret;
  16
  17        buffer = read_object_with_reference(sha1, "tree", &size, NULL);
  18        if (!buffer)
  19                return -1;
  20        ret = read_tree(buffer, size, stage);
  21        free(buffer);
  22        return ret;
  23}
  24
  25static int path_matches(struct cache_entry *a, struct cache_entry *b)
  26{
  27        int len = ce_namelen(a);
  28        return ce_namelen(b) == len &&
  29                !memcmp(a->name, b->name, len);
  30}
  31
  32static int same(struct cache_entry *a, struct cache_entry *b)
  33{
  34        return a->ce_mode == b->ce_mode && 
  35                !memcmp(a->sha1, b->sha1, 20);
  36}
  37
  38
  39/*
  40 * This removes all trivial merges that don't change the tree
  41 * and collapses them to state 0.
  42 */
  43static struct cache_entry *merge_entries(struct cache_entry *a,
  44                                         struct cache_entry *b,
  45                                         struct cache_entry *c)
  46{
  47        /*
  48         * Ok, all three entries describe the same
  49         * filename, but maybe the contents or file
  50         * mode have changed?
  51         *
  52         * The trivial cases end up being the ones where two
  53         * out of three files are the same:
  54         *  - both destinations the same, trivially take either
  55         *  - one of the destination versions hasn't changed,
  56         *    take the other.
  57         *
  58         * The "all entries exactly the same" case falls out as
  59         * a special case of any of the "two same" cases.
  60         *
  61         * Here "a" is "original", and "b" and "c" are the two
  62         * trees we are merging.
  63         */
  64        if (a && b && c) {
  65                if (same(b,c))
  66                        return c;
  67                if (same(a,b))
  68                        return c;
  69                if (same(a,c))
  70                        return b;
  71        }
  72        return NULL;
  73}
  74
  75/*
  76 * When a CE gets turned into an unmerged entry, we
  77 * want it to be up-to-date
  78 */
  79static void verify_uptodate(struct cache_entry *ce)
  80{
  81        struct stat st;
  82
  83        if (!lstat(ce->name, &st)) {
  84                unsigned changed = ce_match_stat(ce, &st);
  85                if (!changed)
  86                        return;
  87                errno = 0;
  88        }
  89        if (errno == ENOENT)
  90                return;
  91        die("Entry '%s' not uptodate. Cannot merge.", ce->name);
  92}
  93
  94/*
  95 * If the old tree contained a CE that isn't even in the
  96 * result, that's always a problem, regardless of whether
  97 * it's up-to-date or not (ie it can be a file that we
  98 * have updated but not committed yet).
  99 */
 100static void reject_merge(struct cache_entry *ce)
 101{
 102        die("Entry '%s' would be overwritten by merge. Cannot merge.", ce->name);
 103}
 104
 105static int merged_entry(struct cache_entry *merge, struct cache_entry *old, struct cache_entry **dst)
 106{
 107        merge->ce_flags |= htons(CE_UPDATE);
 108        if (old) {
 109                /*
 110                 * See if we can re-use the old CE directly?
 111                 * That way we get the uptodate stat info.
 112                 *
 113                 * This also removes the UPDATE flag on
 114                 * a match.
 115                 */
 116                if (same(old, merge)) {
 117                        *merge = *old;
 118                } else {
 119                        verify_uptodate(old);
 120                }
 121        }
 122        merge->ce_flags &= ~htons(CE_STAGEMASK);
 123        *dst++ = merge;
 124        return 1;
 125}
 126
 127static int threeway_merge(struct cache_entry *stages[4], struct cache_entry **dst)
 128{
 129        struct cache_entry *old = stages[0];
 130        struct cache_entry *a = stages[1], *b = stages[2], *c = stages[3];
 131        struct cache_entry *merge;
 132        int count;
 133
 134        /*
 135         * If we have an entry in the index cache ("old"), then we want
 136         * to make sure that it matches any entries in stage 2 ("first
 137         * branch", aka "b").
 138         */
 139        if (old) {
 140                if (!b || !same(old, b))
 141                        return -1;
 142        }
 143        merge = merge_entries(a, b, c);
 144        if (merge)
 145                return merged_entry(merge, old, dst);
 146        if (old)
 147                verify_uptodate(old);
 148        count = 0;
 149        if (a) { *dst++ = a; count++; }
 150        if (b) { *dst++ = b; count++; }
 151        if (c) { *dst++ = c; count++; }
 152        return count;
 153}
 154
 155/*
 156 * Two-way merge.
 157 *
 158 * The rule is to "carry forward" what is in the index without losing
 159 * information across a "fast forward", favoring a successful merge
 160 * over a merge failure when it makes sense.  For details of the
 161 * "carry forward" rule, please see <Documentation/git-read-tree.txt>.
 162 *
 163 */
 164static int twoway_merge(struct cache_entry **src, struct cache_entry **dst)
 165{
 166        struct cache_entry *current = src[0];
 167        struct cache_entry *oldtree = src[1], *newtree = src[2];
 168
 169        if (src[3])
 170                return -1;
 171
 172        if (current) {
 173                if ((!oldtree && !newtree) || /* 4 and 5 */
 174                    (!oldtree && newtree &&
 175                     same(current, newtree)) || /* 6 and 7 */
 176                    (oldtree && newtree &&
 177                     same(oldtree, newtree)) || /* 14 and 15 */
 178                    (oldtree && newtree &&
 179                     !same(oldtree, newtree) && /* 18 and 19*/
 180                     same(current, newtree))) {
 181                        *dst++ = current;
 182                        return 1;
 183                }
 184                else if (oldtree && !newtree && same(current, oldtree)) {
 185                        /* 10 or 11 */
 186                        verify_uptodate(current);
 187                        return 0;
 188                }
 189                else if (oldtree && newtree &&
 190                         same(current, oldtree) && !same(current, newtree)) {
 191                        /* 20 or 21 */
 192                        verify_uptodate(current);
 193                        return merged_entry(newtree, NULL, dst);
 194                }
 195                else
 196                        /* all other failures */
 197                        return -1;
 198        }
 199        else if (newtree)
 200                return merged_entry(newtree, NULL, dst);
 201        else
 202                return 0;
 203}
 204
 205/*
 206 * One-way merge.
 207 *
 208 * The rule is:
 209 * - take the stat information from stage0, take the data from stage1
 210 */
 211static int oneway_merge(struct cache_entry **src, struct cache_entry **dst)
 212{
 213        struct cache_entry *old = src[0];
 214        struct cache_entry *a = src[1];
 215
 216        if (src[2] || src[3])
 217                return -1;
 218
 219        if (!a)
 220                return 0;
 221        if (old && same(old, a)) {
 222                *dst++ = old;
 223                return 1;
 224        }
 225        return merged_entry(a, NULL, dst);
 226}
 227
 228static void check_updates(struct cache_entry **src, int nr)
 229{
 230        static struct checkout state = {
 231                .base_dir = "",
 232                .force = 1,
 233                .quiet = 1,
 234                .refresh_cache = 1,
 235        };
 236        unsigned short mask = htons(CE_UPDATE);
 237        while (nr--) {
 238                struct cache_entry *ce = *src++;
 239                if (ce->ce_flags & mask) {
 240                        ce->ce_flags &= ~mask;
 241                        if (update)
 242                                checkout_entry(ce, &state);
 243                }
 244        }
 245}
 246
 247typedef int (*merge_fn_t)(struct cache_entry **, struct cache_entry **);
 248
 249static void merge_cache(struct cache_entry **src, int nr, merge_fn_t fn)
 250{
 251        struct cache_entry **dst = src;
 252
 253        while (nr) {
 254                int entries;
 255                struct cache_entry *name, *ce, *stages[4] = { NULL, };
 256
 257                name = ce = *src;
 258                for (;;) {
 259                        int stage = ce_stage(ce);
 260                        stages[stage] = ce;
 261                        ce = *++src;
 262                        active_nr--;
 263                        if (!--nr)
 264                                break;
 265                        if (!path_matches(ce, name))
 266                                break;
 267                }
 268
 269                entries = fn(stages, dst);
 270                if (entries < 0)
 271                        reject_merge(name);
 272                dst += entries;
 273                active_nr += entries;
 274        }
 275        check_updates(active_cache, active_nr);
 276}
 277
 278static char *read_tree_usage = "git-read-tree (<sha> | -m [-u] <sha1> [<sha2> [<sha3>]])";
 279
 280static struct cache_file cache_file;
 281
 282int main(int argc, char **argv)
 283{
 284        int i, newfd, merge;
 285        unsigned char sha1[20];
 286
 287        newfd = hold_index_file_for_update(&cache_file, get_index_file());
 288        if (newfd < 0)
 289                die("unable to create new cachefile");
 290
 291        merge = 0;
 292        for (i = 1; i < argc; i++) {
 293                const char *arg = argv[i];
 294
 295                /* "-u" means "update", meaning that a merge will update the working directory */
 296                if (!strcmp(arg, "-u")) {
 297                        update = 1;
 298                        continue;
 299                }
 300
 301                /* "-m" stands for "merge", meaning we start in stage 1 */
 302                if (!strcmp(arg, "-m")) {
 303                        int i;
 304                        if (stage)
 305                                die("-m needs to come first");
 306                        read_cache();
 307                        for (i = 0; i < active_nr; i++) {
 308                                if (ce_stage(active_cache[i]))
 309                                        die("you need to resolve your current index first");
 310                        }
 311                        stage = 1;
 312                        merge = 1;
 313                        continue;
 314                }
 315                if (get_sha1(arg, sha1) < 0)
 316                        usage(read_tree_usage);
 317                if (stage > 3)
 318                        usage(read_tree_usage);
 319                if (unpack_tree(sha1) < 0)
 320                        die("failed to unpack tree object %s", arg);
 321                stage++;
 322        }
 323        if (update && !merge)
 324                usage(read_tree_usage);
 325        if (merge) {
 326                static const merge_fn_t merge_function[] = {
 327                        [1] = oneway_merge,
 328                        [2] = twoway_merge,
 329                        [3] = threeway_merge,
 330                };
 331                if (stage < 2 || stage > 4)
 332                        die("just how do you expect me to merge %d trees?", stage-1);
 333                merge_cache(active_cache, active_nr, merge_function[stage-1]);
 334        }
 335        if (write_cache(newfd, active_cache, active_nr) ||
 336            commit_index_file(&cache_file))
 337                die("unable to write new index file");
 338        return 0;
 339}