const char refname[FLEX_ARRAY];
};
+/*
+ * Transaction states.
+ * OPEN: The transaction is in a valid state and can accept new updates.
+ * An OPEN transaction can be committed.
+ * CLOSED: A closed transaction is no longer active and no other operations
+ * than free can be used on it in this state.
+ * A transaction can either become closed by successfully committing
+ * an active transaction or if there is a failure while building
+ * the transaction thus rendering it failed/inactive.
+ */
+enum ref_transaction_state {
+ REF_TRANSACTION_OPEN = 0,
+ REF_TRANSACTION_CLOSED = 1
+};
+
/*
* Data structure for holding a reference transaction, which can
* consist of checks and updates to multiple references, carried out
struct ref_update **updates;
size_t alloc;
size_t nr;
+ enum ref_transaction_state state;
};
struct ref_transaction *ref_transaction_begin(struct strbuf *err)
{
struct ref_update *update;
+ if (transaction->state != REF_TRANSACTION_OPEN)
+ die("BUG: update called for transaction that is not open");
+
if (have_old && !old_sha1)
die("BUG: have_old is true but old_sha1 is NULL");
{
struct ref_update *update;
+ if (transaction->state != REF_TRANSACTION_OPEN)
+ die("BUG: create called for transaction that is not open");
+
if (!new_sha1 || is_null_sha1(new_sha1))
die("BUG: create ref with null new_sha1");
{
struct ref_update *update;
+ if (transaction->state != REF_TRANSACTION_OPEN)
+ die("BUG: delete called for transaction that is not open");
+
if (have_old && !old_sha1)
die("BUG: have_old is true but old_sha1 is NULL");
int n = transaction->nr;
struct ref_update **updates = transaction->updates;
- if (!n)
+ if (transaction->state != REF_TRANSACTION_OPEN)
+ die("BUG: commit called for transaction that is not open");
+
+ if (!n) {
+ transaction->state = REF_TRANSACTION_CLOSED;
return 0;
+ }
/* Allocate work space */
delnames = xmalloc(sizeof(*delnames) * n);
clear_loose_ref_cache(&ref_cache);
cleanup:
+ transaction->state = REF_TRANSACTION_CLOSED;
+
for (i = 0; i < n; i++)
if (updates[i]->lock)
unlock_ref(updates[i]->lock);