compute a CRC32 for each object as stored in a pack
authorNicolas Pitre <nico@cam.org>
Mon, 9 Apr 2007 05:06:31 +0000 (01:06 -0400)
committerJunio C Hamano <junkio@cox.net>
Tue, 10 Apr 2007 19:48:14 +0000 (12:48 -0700)
The most important optimization for performance when repacking is the
ability to reuse data from a previous pack as is and bypass any delta
or even SHA1 computation by simply copying the raw data from one pack
to another directly.

The problem with this is that any data corruption within a copied object
would go unnoticed and the new (repacked) pack would be self-consistent
with its own checksum despite containing a corrupted object. This is a
real issue that already happened at least once in the past.

In some attempt to prevent this, we validate the copied data by inflating
it and making sure no error is signaled by zlib. But this is still not
perfect as a significant portion of a pack content is made of object
headers and references to delta base objects which are not deflated and
therefore not validated when repacking actually making the pack data reuse
still not as safe as it could be.

Of course a full SHA1 validation could be performed, but that implies
full data inflating and delta replaying which is extremely costly, which
cost the data reuse optimization was designed to avoid in the first place.

So the best solution to this is simply to store a CRC32 of the raw pack
data for each object in the pack index. This way any object in a pack can
be validated before being copied as is in another pack, including header
and any other non deflated data.

Why CRC32 instead of a faster checksum like Adler32? Quoting Wikipedia:

Jonathan Stone discovered in 2001 that Adler-32 has a weakness for very
short messages. He wrote "Briefly, the problem is that, for very short
packets, Adler32 is guaranteed to give poor coverage of the available
bits. Don't take my word for it, ask Mark Adler. :-)" The problem is
that sum A does not wrap for short messages. The maximum value of A for
a 128-byte message is 32640, which is below the value 65521 used by the
modulo operation. An extended explanation can be found in RFC 3309,
which mandates the use of CRC32 instead of Adler-32 for SCTP, the
Stream Control Transmission Protocol.

In the context of a GIT pack, we have lots of small objects, especially
deltas, which are likely to be quite small and in a size range for which
Adler32 is dimed not to be sufficient. Another advantage of CRC32 is the
possibility for recovery from certain types of small corruptions like
single bit errors which are the most probable type of corruptions.

OK what this patch does is to compute the CRC32 of each object written to
a pack within pack-objects. It is not written to the index yet and it is
obviously not validated when reusing pack data yet either.

Signed-off-by: Nicolas Pitre <nico@cam.org>
Signed-off-by: Junio C Hamano <junkio@cox.net>
builtin-pack-objects.c
csum-file.c
csum-file.h
index d0be879443c16fe7b2fec319a9965ae13af28a9b..03e36f01830bc246eaccac85a36a0368d15c9995 100644 (file)
@@ -44,6 +44,7 @@ struct object_entry {
                                 * be used as the base objectto delta huge
                                 * objects against.
                                 */
+       uint32_t crc32;         /* crc of raw pack data for this object */
 };
 
 /*
@@ -381,6 +382,9 @@ static unsigned long write_object(struct sha1file *f,
        enum object_type obj_type;
        int to_reuse = 0;
 
+       if (!pack_to_stdout)
+               crc32_begin(f);
+
        obj_type = entry->type;
        if (! entry->in_pack)
                to_reuse = 0;   /* can't reuse what we don't have */
@@ -496,6 +500,8 @@ static unsigned long write_object(struct sha1file *f,
        if (entry->delta)
                written_delta++;
        written++;
+       if (!pack_to_stdout)
+               entry->crc32 = crc32_end(f);
        return hdrlen + datalen;
 }
 
index b7174c6c056c5a8f2a800ecbcb3cdf304c0bfc3f..7c806ada48d0fd58c091f9415fc8bb2f61bdd2e6 100644 (file)
@@ -49,6 +49,8 @@ int sha1close(struct sha1file *f, unsigned char *result, int update)
 
 int sha1write(struct sha1file *f, void *buf, unsigned int count)
 {
+       if (f->do_crc)
+               f->crc32 = crc32(f->crc32, buf, count);
        while (count) {
                unsigned offset = f->offset;
                unsigned left = sizeof(f->buffer) - offset;
@@ -91,6 +93,7 @@ struct sha1file *sha1create(const char *fmt, ...)
        f->fd = fd;
        f->error = 0;
        f->offset = 0;
+       f->do_crc = 0;
        SHA1_Init(&f->ctx);
        return f;
 }
@@ -111,6 +114,7 @@ struct sha1file *sha1fd(int fd, const char *name)
        f->fd = fd;
        f->error = 0;
        f->offset = 0;
+       f->do_crc = 0;
        SHA1_Init(&f->ctx);
        return f;
 }
@@ -143,4 +147,14 @@ int sha1write_compressed(struct sha1file *f, void *in, unsigned int size)
        return size;
 }
 
+void crc32_begin(struct sha1file *f)
+{
+       f->crc32 = crc32(0, Z_NULL, 0);
+       f->do_crc = 1;
+}
 
+uint32_t crc32_end(struct sha1file *f)
+{
+       f->do_crc = 0;
+       return f->crc32;
+}
index 3ad1a992a758fc9339baa2cecc17ac14af359f1b..7e1339189dcdc6e271fad5df7ad427954642ae9e 100644 (file)
@@ -7,6 +7,8 @@ struct sha1file {
        unsigned int offset, namelen;
        SHA_CTX ctx;
        char name[PATH_MAX];
+       int do_crc;
+       uint32_t crc32;
        unsigned char buffer[8192];
 };
 
@@ -15,5 +17,7 @@ extern struct sha1file *sha1create(const char *fmt, ...) __attribute__((format (
 extern int sha1close(struct sha1file *, unsigned char *, int);
 extern int sha1write(struct sha1file *, void *, unsigned int);
 extern int sha1write_compressed(struct sha1file *, void *, unsigned int);
+extern void crc32_begin(struct sha1file *);
+extern uint32_t crc32_end(struct sha1file *);
 
 #endif