1\pagenumbering{gobble}
2
3\hypertarget{waves}{%
4\section{Waves}\label{waves}}
5
6\hypertarget{longitudinal-motion-wave}{%
7\subsection{\texorpdfstring{Longitudinal (motion \(||\)
8wave)}{Longitudinal (motion \textbar{}\textbar{} wave)}}\label{longitudinal-motion-wave}}
9
10\textbf{rarefactions} (expansions) and \textbf{compressions}
11
12\includegraphics{graphics/longitudinal-waves.png}
13
14\hypertarget{transverse-waves-motion-perp-wave}{%
15\subsection{\texorpdfstring{Transverse waves (motion \(\perp\)
16wave)}{Transverse waves (motion \textbackslash{}perp wave)}}\label{transverse-waves-motion-perp-wave}}
17
18\textbf{nodes} are fixed on graph
19
20\includegraphics{graphics/transverse-waves.png}
21
22\hypertarget{measuring-mechanical-waves}{%
23\subsection{Measuring mechanical
24waves}\label{measuring-mechanical-waves}}
25
26\textbf{Amplitude \(A\)} - max displacement from rest position\\
27\textbf{Wavelength \(\lambda\)} - \(x\) distance between \(y_1=y_2\)\\
28\textbf{Frequency \(f\)} - number of cycles (wavelengths) per second
29
30\(T={1 \over f}\quad\)(period: time for one cycle)\\
31\(v=f \lambda \quad\)(speed: displacement per second)
32
33\hypertarget{doppler-effect}{%
34\subsection{Doppler effect}\label{doppler-effect}}
35
36When \(P_1\) approaches \(P_2\), each wave \(w_n\) has slightly less
37distance to travel than \(w_{n-1}\). Hence, \(w_n\) reaches the observer
38sooner than \(w_{n-1}\), increasing ``apparent'' wavelength.
39
40\hypertarget{interference}{%
41\subsection{Interference}\label{interference}}
42
43When a medium changes character, energy is \emph{reflected},
44\emph{absorbed}, and \emph{transmitted}
45
46\textbf{Standing waves} - constructive int. at resonant freq
47
48\hypertarget{polarisation}{%
49\subsection{Polarisation}\label{polarisation}}
50
51\includegraphics[width=0.2\textwidth,height=\textheight]{graphics/polarisation.png}
52
53\hypertarget{refraction}{%
54\subsection{Refraction}\label{refraction}}
55
56\includegraphics{graphics/refraction.png}
57
58Angle of incidence \(\theta_i =\) angle of reflection \(\theta_r\)
59
60Critical angle \(\theta_c = \sin^-1{n_2 \over n_1}\)
61
62Snell's law - \(n_1 \sin \theta_1=n_2 \sin \theta_2\)
63
64\hypertarget{harmonics}{%
65\subsection{Harmonics}\label{harmonics}}
66
67where \(a=2\) for antinodes at both ends, \(a=4\) for antinodes at one
68end:
69
70\(\lambda = {{al} \div n}\quad\) (wavelength for \(n^{th}\) harmonic)\\
71\(f = {nv \div al}\quad\) (frequency for \(n_{th}\) harmonic at length
72\(l\) and speed \(v\))
73
74\hypertarget{double-split}{%
75\subsection{Double split}\label{double-split}}
76
77Path difference \(pd = |S_1P-S_2P|\) for point \(p\) on screen
78
79Constructive: \(pd = n\lambda\) where \(n \in [0, 1, 2, ...]\)\\
80Destructive: \(pd = (n-{1 \over 2})\lambda\) where
81\(n \in [1, 2, 3, ...]\)
82
83Fringe separation: \(\Delta x = {{\lambda l }\over d}\)
84
85where \(\Delta x\) is distance between fringes\\
86\(l\) is distance from slits to screen\\
87\(d\) is separation between sluts (\(=S_1-S_2\))
88
89\includegraphics[width=\textwidth,height=1.04167in]{graphics/em-spectrum.png}