1\PassOptionsToPackage{unicode=true}{hyperref} % options for packages loaded elsewhere
2\PassOptionsToPackage{hyphens}{url}
3%
4\documentclass[twocolumn]{article}
5\usepackage{array}
6\usepackage{lmodern}
7\usepackage{amssymb,amsmath}
8\usepackage{ifxetex,ifluatex}
9\usepackage{multicol}
10\usepackage{fixltx2e} % provides \textsubscript
11\ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex
12 \usepackage[T1]{fontenc}
13 \usepackage[utf8]{inputenc}
14 \usepackage{textcomp} % provides euro and other symbols
15\else % if luatex or xelatex
16 \usepackage{unicode-math}
17 \defaultfontfeatures{Ligatures=TeX,Scale=MatchLowercase}
18\fi
19% use upquote if available, for straight quotes in verbatim environments
20\IfFileExists{upquote.sty}{\usepackage{upquote}}{}
21% use microtype if available
22\IfFileExists{microtype.sty}{%
23\usepackage[]{microtype}
24\UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts
25}{}
26\IfFileExists{parskip.sty}{%
27\usepackage{parskip}
28}{% else
29\setlength{\parindent}{0pt}
30\setlength{\parskip}{6pt plus 2pt minus 1pt}
31}
32\usepackage{hyperref}
33\hypersetup{
34 pdfauthor={Andrew Lorimer},
35 pdfborder={0 0 0},
36 breaklinks=true}
37\urlstyle{same} % don't use monospace font for urls
38\usepackage[margin=2cm]{geometry}
39\usepackage{supertabular, booktabs}
40% Fix footnotes in tables (requires footnote package)
41\IfFileExists{footnote.sty}{\usepackage{footnote}\makesavenoteenv{supertabular}}{}
42\usepackage{graphicx,grffile}
43\makeatletter
44\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi}
45\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi}
46\makeatother
47% Scale images if necessary, so that they will not overflow the page
48% margins by default, and it is still possible to overwrite the defaults
49% using explicit options in \includegraphics[width, height, ...]{}
50\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio}
51\setlength{\emergencystretch}{3em} % prevent overfull lines
52\providecommand{\tightlist}{%
53 \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
54\setcounter{secnumdepth}{0}
55% Redefines (sub)paragraphs to behave more like sections
56\ifx\paragraph\undefined\else
57\let\oldparagraph\paragraph
58\renewcommand{\paragraph}[1]{\oldparagraph{#1}\mbox{}}
59\fi
60\ifx\subparagraph\undefined\else
61\let\oldsubparagraph\subparagraph
62\renewcommand{\subparagraph}[1]{\oldsubparagraph{#1}\mbox{}}
63\fi
64
65% set default figure placement to htbp
66\makeatletter
67\def\fps@figure{htbp}
68\makeatother
69
70\usepackage{supertabular}
71
72\author{Andrew Lorimer}
73\date{}
74
75\pagenumbering{gobble}
76
77\begin{document}
78% \begin{multicols}{2}
79\renewcommand{\arraystretch}{1.5}
80
81\hypertarget{spec---calculus}{%
82\section{Spec - Calculus}\label{spec---calculus}}
83
84\hypertarget{gradients}{%
85\subsection{Gradients}\label{gradients}}
86
87\[m \operatorname{of} x \in [a,b] = {{f(b)-f(a)}\over {b - a}} = {dy \over dx}\]
88
89\hypertarget{limit-theorems}{%
90\subsection{Limit theorems}\label{limit-theorems}}
91
92\begin{enumerate}
93\def\labelenumi{\arabic{enumi}.}
94\tightlist
95\item
96 For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
97\item
98 \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
99\item
100 \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
101\item
102 \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
103\end{enumerate}
104
105\hypertarget{first-principles-derivative}{%
106\subsection{First principles
107derivative}\label{first-principles-derivative}}
108
109\[f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}\]
110
111\hypertarget{tangents-gradients}{%
112\subsection{Tangents \& gradients}\label{tangents-gradients}}
113
114\textbf{Tangent line} - defined by \(y=mx+c\) where
115\(m={dy \over dx}\)\\
116\textbf{Normal line} - \(\perp\) tangent
117(\(m_{\operatorname{tan}} \cdot m_{\operatorname{norm}} = -1\))\\
118\textbf{Secant} \(={{f(x+h)-f(x)} \over h}\)
119
120\hypertarget{derivatives}{%
121\subsection{Derivatives}\label{derivatives}}
122
123\tablehead{\hline \(f(x)\) & \(f^\prime(x)\) \\ \hline \\}
124\begin{supertabular}[]{@{}ll@{}}
125
126\(kx^n\) & \(knx^{n-1}\)\tabularnewline
127\(g(x) \pm h(x)\) & \(g^\prime (x) \pm h^\prime (x)\)\tabularnewline
128\(c\) & \(0\)\tabularnewline
129\({u \over v}\) &
130\({{(v{du \over dx} - u{dv \over dx}}) \div v^2}\)\tabularnewline
131\(uv\) & \(u{dv \over dx} + v{du \over dx}\)\tabularnewline
132\(f \circ g\) & \({dy \over du} \cdot {du \over dx}\)\tabularnewline
133\(\sin ax\) & \(a\cos ax\)\tabularnewline
134\(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\tabularnewline
135\(\cos ax\) & \(-a \sin ax\)\tabularnewline
136\(\cos(f(x))\) & \(f^\prime(x)(-\sin(f(x)))\) \\
137\(e^{ax}\) & \(ae^{ax}\)\tabularnewline
138\(\log_e {ax}\) & \(1 \over x\)\tabularnewline
139\(\log_e f(x)\) & \(f^\prime (x) \over f(x)\)\tabularnewline
140
141\end{supertabular}
142
143\hypertarget{product-rule-for-yuv}{%
144\subsection{\texorpdfstring{Product rule for
145\(y=uv\)}{Product rule for y=uv}}\label{product-rule-for-yuv}}
146
147\[{dy \over dx} = u{dv \over dx} + v{du \over dx}\]
148
149\subsection{Chain rule for $(f\circ g)$}
150
151$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$
152
153% Function notation:
154
155$${\displaystyle (f\circ g)'=(f'\circ g)\cdot g'}=f'(g(x)) \cdot g'(x)$$
156
157% $$(f\circ g)^\prime(x)=f^\prime(g(x))g^\prime(x),\quad \text{where}\hspace{0.3em} (f\circ g)(x)=f(g(x))$$}
158
159\hypertarget{logarithms}{%
160\subsection{Logarithms}\label{logarithms}}
161
162\[\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x\]
163
164\subsubsection{Logarithmic identities}
165$\log_b (xy)=\log_b x + \log_b y$ \\
166$\log_b x^n = n \log_b x$ \\
167$\log_b y^{x^n} = x^n \log_b y$
168
169\hypertarget{integration}{%
170\subsection{Integration}\label{integration}}
171
172\[\int f(x) dx = F(x) + c\]
173
174% \begin{itemize}
175% \tightlist
176% \item
177 area enclosed by curves
178% \end{itemize}
179
180\tablehead{\hline \(f(x)\) & \(\int f(x) \cdot dx\) \\ \hline \\}
181\begin{supertabular}[]{@{}ll@{}}
182
183
184\(k\) (constant) & \(kx + c\) \\
185\(x^n\) & \({1 \over {n+1}}x^{n+1} + c\) \\
186\(a x^{-n}\) & \(a \cdot \log_e x + c\) \\
187\(e^{kx}\) & \({1 \over k} e^{kx} + c\) \\
188\(e^k\) & \(e^kx + c\) \\
189\(\sin kx\) & \(-{1 \over k} \cos (kx) + c\) \\
190\(\cos kx\) & \({1 \over k} \sin (kx) + c\) \\
191\({f^\prime (x)} \over {f(x)}\) & \(\log_e f(x) + c\) \\
192\(g^\prime(x)\cdot f^\prime(g(x)\) & \(f(g(x))\) (chain rule) \\
193\(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\) \\
194\({1 \over {ax+b}}\) & \({1 \over a} \log_e (ax+b) + c\) \\
195\((ax+b)^n\) & \({1 \over {a(n+1)}}(ax+b)^{n-1} + c\) \\
196
197\end{supertabular}
198
199\hypertarget{definite-integrals}{%
200\subsection{Definite integrals}\label{definite-integrals}}
201
202\[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)_{}\]
203
204\hypertarget{kinematics}{%
205\subsection{Kinematics}\label{kinematics}}
206
207\textbf{position \(x\)} - distance from origin or fixed point\\
208\textbf{displacement \(s\)} - change in $x$ from starting point \\
209\textbf{velocity \(v\)} - change in position with respect to time\\
210\textbf{acceleration \(a\)} - change in velocity\\
211\textbf{speed} - magnitude of velocity
212
213\large{
214\tablehead{}
215\begin{supertabular}[]{@{}ll@{}}
216% \toprule
217& no\tabularnewline
218\(v=u+at\) & \(s\)\tabularnewline
219\(s=ut + {1 \over 2} at^2\) & \(v\)\tabularnewline
220\(v^2 = u^2 + 2as\) & \(t\)\tabularnewline
221\(s= {1 \over 2}(u+v)t\) & \(a\)\tabularnewline
222
223
224
225\end{supertabular}
226}
227% \end{multicols}
228\end{document}