1--- 2geometry: margin=2cm 3columns: 2 4author: Andrew Lorimer 5--- 6 7# Transformation 8 9**Order of operations:** DRT - Dilations, Reflections, Translations 10 11## Transforming $x^n$ to $a(x-h)^n+K$ 12 13- $|a|$ is the dilation factor of $|a|$ units parallel to $y$-axis or from $x$-axis 14- if $a<0$, graph is reflected over $x$-axis 15- $k$ - translation of $k$ units parallel to $y$-axis or from $x$-axis 16- $h$ - translation of $h$ units parallel to $x$-axis or from $y$-axis 17- for $(ax)^n$, dilation factor is $1 \over a$ parallel to $x$-axis or from $y$-axis 18- when $0 < |a| < 1$, graph becomes closer to axis 19 20## Dilations 21 22For the graph of $y = f(x)$, there are two pairs of equivalent processes: 23 241. - Dilating from $x$-axis: $(x, y) \rightarrow (x, by)$ 25- Replacing $y$ with $y \over b$ to obtain $y = b f(x)$ 26 272. - Dilating from $y$-axis: $(x, y) \rightarrow (ax, y)$ 28- Replacing $x$ with $x \over a$ to obtain $y = f({x \over a})$ 29 30For graph of $y={1 \over x}$, horizontal & vertical dilations are equivalent (symmetrical). If $y={a \over x}$, graph is contracted rather than dilated. 31 32## Reflections 33 34- Reflection **in** axis = reflection **over** axis = reflection **across** axis 35- Translations do not change 36 37## Translations 38 39For $y = f(x)$, these processes are equivalent: 40 41- applying the translation $(x, y) \rightarrow (x + h, y + k)$ to the graph of $y = f(x)$ 42- replacing $x$ with $x − h$ and $y$ with $y − k$ to obtain $y − k = f (x − h)$ 43 44## Transforming $f(x)$ to $y=Af[n(x+c)]+b$# 45 46Applies to exponential, log, trig, power, polynomial functions. 47Functions must be written in form $y=Af[n(x+c)] + b$ 48 49$A$ - dilation by factor $A$ from $x$-axis (if $A<0$, reflection across $y$-axis) 50$n$ - dilation by factor $1 \over n$ from $y$-axis (if $n<0$, reflection across $x$-axis) 51$c$ - translation from $y$-axis ($x$-shift) 52$b$ - translation from $x$-axis ($y$-shift) 53 54## Power functions 55 56**Strictly increasing:** $f(x_2) > f(x_1)$ where $x_2 > x_1$ (including $x=0$) 57 58### Odd and even functions 59Even when $f(x) = -f(x)$ 60Odd when $-f(x) = f(-x)$ 61 62Function is even if it can be reflected across $y$-axis $\implies f(x)=f(-x)$ 63Function $x^{\pm {p \over q}}$ is odd if $q$ is odd 64 65### $x^n$ where $n \in \mathbb{Z}^+$ 66 67| $n$ is even: | $n$ is odd: | 68| ------------ | ----------- | 69|![](graphics/parabola.png){#id .class width=20%} | ![](graphics/cubic.png){#id .class width=20%} | 70 71### $x^n$ where $n \in \mathbb{Z}^-$ 72 73| $n$ is even: | $n$ is odd: | 74| ------------ | ----------- | 75|![](graphics/truncus.png){#id .class width=20%} | ![](graphics/hyperbola.png){#id .class width=20%} | 76 77### $x^{1 \over n}$ where $n \in \mathbb{Z}^+$ 78 79| $n$ is even: | $n$ is odd: | 80| ------------ | ----------- | 81|![](graphics/square-root-graph.png){#id .class width=20%} | ![](graphics/cube-root-graph.png){#id .class width=20%} | 82 83 84### $x^{-1 \over n}$ where $n \in \mathbb{Z}^+$ 85 86Mostly only on CAS. 87 88We can write $x^{-1 \over n} = {1 \over {x^{1 \over n}}} = {1 \over ^n \sqrt{x}}$n. 89Domain is: $\begin{cases} \mathbb{R} \setminus \{0\}\hspace{0.5em} \text{ if }n\text{ is odd} \\ \mathbb{R}^+ \hspace{2.6em}\text{if }n\text{ is even}\end{cases}$ 90 91If $n$ is odd, it is an odd function. 92 93### $x^{p \over q}$ where $p, q \in \mathbb{Z}^+$ 94 95$$x^{p \over q} = \sqrt[q]{x^p}$$ 96 97- if $p > q$, the shape of $x^p$ is dominant 98- if $p < q$, the shape of $x^{1 \over q}$ is dominant 99- points $(0, 0)$ and $(1, 1)$ will always lie on graph 100- Domain is: $\begin{cases} \mathbb{R} \hspace{4em}\text{ if }q\text{ is odd} \\ \mathbb{R}^+ \cup \{0\} \hspace{1em}\text{if }q\text{ is even}\end{cases}$ 101 102 103## Combinations of functions (piecewise/hybrid) 104 105$$\text{e.g.}\quad f(x)=\begin{cases} ^3 \sqrt{x}, \hspace{2em} x \le 0\\2, \hspace{3.4em} 0 < x < 2\\ x, \hspace{3.4em} x \ge 2 \end{cases}$$ 106 107Open circle - point included 108Closed circle - point not included 109 110### Sum, difference, product of functions 111| | | | 112|---|-----|-----| 113|sum|$f+g$|domain $= \text{dom}(f) \cap \text{dom}(g)$| 114|difference|$f-g$ or $g-f$|domain $=\text{dom}(f) \cap \text{dom}(g)$| 115|product|$f \times g$|domain $=\text{dom}(f) \cap \text{dom}(g)$| 116 117Addition of linear piecewise graphs - add $y$-values at key points 118 119Product functions: 120 121- product will equal 0 if one of the functions is equal to 0 122- turning point on one function does not equate to turning point on product 123 124## Matrix transformations 125 126Find new point $(x^\prime, y^\prime)$. Substitute these into original equation to find image with original variables $(x, y)$. 127 128## Composite functions 129 130$(f \circ g)(x)$ is defined iff $\operatorname{ran}(g) \subseteq \operatorname{dom}(f)$ 131 132