1\documentclass[spec-collated.tex]{subfiles}
2\begin{document}
3
4\section{Dynamics}
5
6\subsection*{Resolution of forces}
7
8\textbf{Resultant force} is sum of force vectors
9
10\subsubsection*{In angle-magnitude form}
11
12\makebox[3cm]{Cosine rule:} \(c^2=a^2+b^2-2ab\cos\theta\)
13\makebox[3cm]{Sine rule:} \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\)
14
15\subsubsection*{In \(\boldsymbol{i}\)---\(\boldsymbol{j}\) form}
16
17Vector of \(a\) N at \(\theta\) to \(x\) axis is equal to \(a \cos \theta \boldsymbol{i} + a \sin \theta \boldsymbol{j}\). Convert all force vectors then add.
18
19To find angle of an \(a\boldsymbol{i} + b\boldsymbol{j}\) vector, use \(\theta = \tan^{-1} \frac{b}{a}\)
20
21\subsubsection*{Resolving in a given direction}
22
23The resolved part of a force \(P\) at angle \(\theta\) is has magnitude \(P \cos \theta\)
24
25To convert force \(||\vec{OA}\) to angle-magnitude form, find component \(\perp\vec{OA}\) then:
26\begin{align*}
27 |\boldsymbol{r}| &= \sqrt{\left(||\vec{OA}\right)^2 + \left(\perp\vec{OA}\right)^2} \\
28 \theta &= \tan^{-1}\dfrac{\perp\vec{OA}}{||\vec{OA}}
29\end{align*}
30
31\subsection*{Newton's laws}
32
33\begin{tcolorbox}
34 \begin{enumerate}[leftmargin=1mm]
35 \item Velocity is constant without \(\Sigma F\)
36 \item \(\frac{d}{dt} \rho \propto \Sigma F \implies \boldsymbol{F}=m\boldsymbol{a}\)
37 \item Equal and opposite forces
38 \end{enumerate}
39\end{tcolorbox}
40
41\subsubsection*{Weight}
42A mass of \(m\) kg has force of \(mg\) acting on it
43
44\subsubsection*{Momentum \(\rho\)}
45\[ \rho = mv \tag{units kg m/s or Ns} \]
46
47\subsubsection*{Reaction force \(R\)}
48
49\begin{itemize}
50 \item With no vertical velocity, \(R=mg\)
51 \item With vertical acceleration, \(|R|=m|a|-mg\)
52 \item With force \(F\) at angle \(\theta\), then \(R=mg-F\sin\theta\)
53\end{itemize}
54
55\subsubsection*{Friction}
56
57\[ F_R = \mu R \tag{friction coefficient} \]
58
59\subsection*{Inclined planes}
60
61\[ \boldsymbol{F} = |\boldsymbol{F}| \cos \theta \boldsymbol{i} + |\boldsymbol{F}| \sin \theta \boldsymbol{j} \]
62\begin{itemize}
63 \item Normal force \(R\) is at right angles to plane
64 \item Let direction up the plane be \(\boldsymbol{i}\) and perpendicular to plane \(\boldsymbol{j}\)
65\end{itemize}
66
67\def\iangle{30} % Angle of the inclined plane
68
69\def\down{-90}
70\def\arcr{0.5cm} % Radius of the arc used to indicate angles
71
72\tikzset{
73 force/.style={->,draw=blue,fill=blue, thick},
74 axis/.style={densely dashed,gray,font=\small},
75 M/.style={rectangle,draw,fill=lightgray,minimum size=0.5cm,thin},
76 m/.style={rectangle,draw=black,fill=lightgray,minimum size=0.3cm,thin},
77 plane/.style={draw=black,fill=blue!10},
78 string/.style={draw=red, thick},
79 pulley/.style={thick}
80}
81\tikzset{
82 % style to apply some styles to each segment of a path
83 on each segment/.style={
84 decorate,
85 decoration={
86 show path construction,
87 moveto code={},
88 lineto code={
89 \path [#1]
90 (\tikzinputsegmentfirst) -- (\tikzinputsegmentlast);
91 },
92 closepath code={
93 \path [#1]
94 (\tikzinputsegmentfirst) -- (\tikzinputsegmentlast);
95 },
96 },
97 },
98 % style to add an arrow in the middle of a path
99 mid arrow/.style={postaction={decorate,decoration={
100 markings,
101 mark=at position .5 with {\arrow[#1]{stealth}}
102 }}},
103}
104 \begin{center}\begin{tikzpicture}[scale=1.8]
105
106 \pgfmathsetmacro{\Fnorme}{2}
107 \pgfmathsetmacro{\Fangle}{30}
108
109 \begin{scope}[rotate=\iangle]
110 \node[M,transform shape] (M) {};
111 \coordinate (xmin) at ($(M.south west)-({abs(1.1*\Fnorme*sin(-\Fangle))},0)$);
112 \coordinate (xmax) at ($(M.south east)+({abs(1.1*\Fnorme*sin(-\Fangle))},0)$);
113 \coordinate (ymax) at ($(M.center)+(0,{cos(\Fangle)})$);
114 \coordinate (ymin) at ($(M.center)-(0,{cos(\Fangle)})$);
115 \coordinate (axiscentre) at ($(M.south)+(0.5cm, 0.5cm)$);
116 \draw[postaction={decorate, decoration={border, segment length=4pt, angle=-45},draw,red}] (xmin) -- (xmax);
117 \coordinate (fr) at ($(M.center)+({\Fnorme*sin(-\Fangle)}, 0)$);
118 {[axis,->]
119 \draw ($(M)+(1,0)$) -- ($(M)+(1.5,0)$) node[above right] {\(\boldsymbol{i}\)};
120 \draw ($(M)+(1,0)$) -- ($(M)+(1,0.5)$) node[above right] {\(\boldsymbol{j}\)};
121 }
122 {[force,->]
123 \draw (M.center) -- (ymax) node [right] {\(R\)};
124 \draw (M.center) -- (fr) node [left] {\(\mu R\)};
125 }
126 \end{scope}
127 \draw[force,->] (M.center) -- ++(0,-1) node[below] {$mg$};
128 \draw (xmin)+(0:\arcr) arc [start angle=0, end angle=\iangle, radius=\arcr] node [right, midway] {\footnotesize\(\theta\)};
129 \coordinate (xbottom) at ($(1, {4*\Fnorme*-cos(\Fangle)})$);
130 \draw [->] (xmin) -- ++($({1.35*\Fnorme*cos(\Fangle)}, 0)$);
131 \begin{scope}[darkgray, rotate=\iangle] \path [draw=darkgray, postaction={on each segment={mid arrow}}] (M.center) -- (ymin) node [pos=0.5, right] {\(mg \cos \theta\)} -- ++(-0.5,0) node[pos=0.5, below right] {\(mg \sin \theta\)};
132 \end{scope}
133 \end{tikzpicture}\end{center}
134
135\subsection*{Connected particles}
136
137\def\boxwidth{0.5}
138\tikzset{
139 box/.style={rectangle,draw,fill=lightgray,minimum width=\boxwidth,thin},
140 m/.style={rectangle,draw=black,fill=lightgray,minimum size=\boxwidth, thin}
141}
142
143
144\begin{center}
145 \begin{tikzpicture}[scale=1.5]
146
147 \matrix {
148 \begin{scope}[scale=1.5]
149
150 \coordinate (O) at (0,0);
151 \coordinate (A) at ($({3*cos(\iangle)},{3*sin(\iangle)})$);
152 \coordinate (B) at ($({3*cos(\iangle)},0)$);
153 \coordinate (C) at ($({(1.5-0.5*\boxwidth)*cos(\iangle)},{(1.5-0.5*\boxwidth)*sin(\iangle)})$); % centre of box
154 \coordinate (D) at ($(C)+(\iangle:\boxwidth)$);
155 \coordinate (E) at ($(D)+(90+\iangle:0.5*\boxwidth)$);
156 \coordinate (F) at ($(B)+(0,{1.5*sin(\iangle)})$);
157 \coordinate (X) at ($(A)+(\iangle:0.5*\boxwidth)$); % centre of pulley
158 \coordinate (Y) at ($(X)+(90+\iangle:0.5*\boxwidth)$); % chord of pulley
159
160 \draw[plane] (O) -- (A) -- (B) -- (O);
161 \draw (O)+(\arcr,0) arc [start angle=0,end angle=\iangle,radius=\arcr] node [right, pos=.75] {\footnotesize\(\theta\)};
162
163 \draw [rotate=\iangle, m] (C) rectangle ++(\boxwidth,\boxwidth) node (z) [rotate=\iangle, midway] {\(m_1\)};
164 \draw [pulley] (A) -- (X) ++(0.5*\boxwidth, 0) arc[rotate=\iangle, start angle=0, delta angle=360, x radius=0.25, y radius=0.25] node(r) [midway, rotate=\iangle] {};
165 \draw [string] (E) -- (Y) arc (90+\iangle:0:0.25) -- ++($(0,{-1.5*sin(\iangle)-\boxwidth})$) node (p) {};
166 \coordinate (Z) at ($(p.center)+({-0.5*\boxwidth},0)$);
167 \draw [m] (Z) rectangle ++(\boxwidth, \boxwidth) node [midway] {\(m_2\)};
168
169 \end{scope}
170\\
171
172 \begin{scope}[rotate=\iangle, scale=1.5]
173
174 \draw [m] ++(-0.5*\boxwidth,-0.5*\boxwidth) rectangle ++(\boxwidth,\boxwidth) node (n) [rotate=\iangle, midway] {\(m_1\)};
175
176 {[axis,-]
177 \draw (0,-1) -- (0,0);
178 \draw[solid,shorten >=0.5pt] (\down-\iangle:\arcr) arc(\down-\iangle:\down:\arcr);
179 \node at (\down-0.5*\iangle:1.3*\arcr) {\(\theta\)};
180 }
181
182 {[force,->]
183 \draw (n.center) -- ++(0,{cos(\iangle)}) node[above right] {\(R_1\)};
184 \draw (n.west) -- ++(-0.5,0) node[left] {\(\mu R_1\)};
185 \draw (n.east) -- ++(1,0) node[above] {\(T_1\)};
186 }
187
188 \draw[force,->, rotate=-\iangle] (M.center) -- ++(0,-1) node[below] {\(m_1 g\)};
189
190 \end{scope}
191
192 &
193 \begin{scope}[scale=1.5]
194
195 \draw [m] ++(-0.5*\boxwidth,-0.5*\boxwidth) rectangle ++(\boxwidth,\boxwidth) node [midway] {\(m_2\)};
196
197 {[force,->]
198 \draw (0,0.5*\boxwidth) -- ++(0,1) node[above] {\(T_2\)};
199 \draw (0,-0.5*\boxwidth) -- ++(0,-1) node[right] {\(m_2 g\)};
200 }
201 \end{scope}
202 \\
203 };
204 \end{tikzpicture}
205 \end{center}
206
207\begin{itemize}
208 \item \textbf{Suspended pulley:} tension in both sections of rope are equal \\
209 \(|a| = g \frac{m_1 - m_2}{m_1 + m_2}\) where \(m_1\) accelerates down \\
210 With tension:
211 \[ \begin{cases}m_1 g - T = m_1 a\\ T - m_2 g = m_2 a\end{cases} \\ \implies m_1 g - m_2 g = m_1 a + m_2 a \]
212 \item \textbf{String pulling mass on inclined pane:} Resolve parallel to plane
213 \[ T-mg \sin \theta = ma \]
214 \item \textbf{Linear connection:} find acceleration of system first
215 \item \textbf{Pulley on right angle:} \(a = \frac{m_2g}{m_1+m_2}\) where \(m_2\) is suspended (frictionless on both surfaces)
216 \item \textbf{Pulley on edge of incline:} find downwards force \(W_2\) and components of mass on plane
217\end{itemize}
218
219\begin{tabular}{rl}
220 \parbox[t][][t]{8em}{In this example, note \(T_1 \ne T_2\):} &
221 \parbox{12em}{
222 \begin{tikzpicture}
223
224 \begin{scope}
225
226 \coordinate (O) at (0,0);
227 \coordinate (A) at ($({3*cos(\iangle)},{3*sin(\iangle)})$);
228 \coordinate (B) at ($({3*cos(\iangle)},0)$);
229 \coordinate (C) at ($({(1-0.25*\boxwidth)*cos(\iangle)},{(1-0.25*\boxwidth)*sin(\iangle)})$); % centre of box
230 \coordinate (D) at ($(C)+(\iangle:\boxwidth)$);
231 \coordinate (E) at ($(D)+(90+\iangle:0.5*\boxwidth)$);
232 \coordinate (F) at ($(B)+(0,{1.5*sin(\iangle)})$);
233 \coordinate (G) at ($(A)+(\iangle:-2*\boxwidth)$);
234 \coordinate (H) at ($(G)+(90+\iangle:0.5*\boxwidth)$);
235 \coordinate (I) at ($(H)+(\iangle:-0.5*\boxwidth)$);
236 \coordinate (J) at ($(H)+(\iangle:\boxwidth)$);
237 \coordinate (X) at ($(A)+(\iangle:0.5*\boxwidth)$); % centre of pulley
238 \coordinate (Y) at ($(X)+(90+\iangle:0.5*\boxwidth)$); % chord of pulley
239
240 \draw[plane] (O) -- (A) -- (B) -- (O);
241 \draw (O)+(\arcr,0) arc [start angle=0,end angle=\iangle,radius=\arcr] node [right, pos=.75] {\footnotesize\(\theta\)};
242
243 \draw [rotate=\iangle, m] (C) rectangle ++(\boxwidth,\boxwidth) node (z) [rotate=\iangle, midway, font=\footnotesize] {\(m_1\)};
244 \draw [rotate=\iangle, m] (G) rectangle ++(\boxwidth,\boxwidth) node (l) [rotate=\iangle, midway, font=\footnotesize] {\(m_2\)};
245 \draw [pulley] (A) -- (X) ++(0.5*\boxwidth, 0) arc[rotate=\iangle, start angle=0, delta angle=360, x radius=0.25, y radius=0.25] node(r) [midway, rotate=\iangle] {};
246 \draw [string] (E) -- (H) node [midway, above, font=\footnotesize, rotate=\iangle] {\(T_2\)};
247 \draw [string] (J) -- (Y) node [midway, above, font=\footnotesize, rotate=\iangle] {\(T_1\)} arc (90+\iangle:0:0.25) -- ++($(0,{-1.5*sin(\iangle)})$) node [midway, above right, font=\footnotesize] {\(T_1\)} node[m] {\(m_3\)};
248
249 \end{scope}
250
251 \end{tikzpicture}}
252\end{tabular}
253
254\subsection*{Equilibrium}
255
256\[ \dfrac{A}{\sin a} = \dfrac{B}{\sin b} = \dfrac{C}{\sin c} \tag{Lami's theorem}\]
257\[ c^2 = a^2 + b^2 - 2ab \cos \theta \tag{cosine rule} \]
258
259Three methods:
260\begin{enumerate}
261 \item Lami's theorem (sine rule)
262 \item Triangle of forces (cosine rule)
263 \item Resolution of forces (\(\Sigma F = 0\) - simultaneous)
264\end{enumerate}
265
266 \begin{cas}
267 \textbf{To verify:} Geometry tab, then select points with normal cursor. Click right arrow at end of toolbar and input point, then lock known constants.
268 \end{cas}
269
270\subsection*{Variable forces (DEs)}
271
272\[ a = \dfrac{d^2x}{dt^2} = \dfrac{dv}{dt} = v\dfrac{dv}{dx} = \dfrac{d}{dx} \left( \frac{1}{2} v^2 \right) \]
273
274\end{document}