1\documentclass[a4paper]{article}
2\usepackage{multicol}
3\usepackage[cm]{fullpage}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\setlength{\parindent}{0cm}
7\usepackage[nodisplayskipstretch]{setspace}
8\setstretch{1.3}
9\usepackage{graphicx}
10\usepackage{wrapfig}
11\usepackage{enumitem}
12\setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt,leftmargin=5pt}
13
14
15\begin{document}
16
17\pagenumbering{gobble}
18\begin{multicols}{3}
19
20% +++++++++++++++++++++++
21
22{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
23
24% +++++++++++++++++++++++
25\section{Motion}
26
27 $\operatorname{m/s} \, \times \, 3.6 = \operatorname{km/h}$
28
29 \subsection*{Inclined planes}
30 $F = m g \sin\theta - F_{\text{frict}} = m a$
31
32% -----------------------
33 \subsection*{Banked tracks}
34
35 \includegraphics[height=4cm]{graphics/banked-track.png}
36
37 $\theta = \tan^{-1} {{v^2} \over rg}$
38
39 $\Sigma F$ always acts towards centre (horizontally)
40
41 $\Sigma F = F_{\operatorname{norm}} + F_{\operatorname{g}}={{mv^2} \over r} = mg \tan \theta$
42
43 Design speed $v = \sqrt{gr\tan\theta}$
44
45 $n\sin \theta = {mv^2 \div r}, \quad n\cos \theta = mg$
46
47% -----------------------
48 \subsection*{Work and energy}
49
50 $W=Fx=\Delta \Sigma E$ (work)
51
52 $E_K = {1 \over 2}mv^2$ (kinetic)
53
54 $E_G = mgh$ (potential)
55
56 $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
57
58% -----------------------
59 \subsection*{Horizontal circular motion}
60
61 $v = {{2 \pi r} \over T}$
62
63 $f = {1 \over T}, \quad T = {1 \over f}$
64
65 $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
66
67 $\Sigma F, a$ towards centre, $v$ tangential
68
69 $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
70
71 \includegraphics[height=4cm]{graphics/circ-forces.png}
72
73% -----------------------
74 \subsection*{Vertical circular motion}
75
76 $T =$ tension, e.g. circular pendulum
77
78 $T+mg = {{mv^2}\over r}$ at highest point
79
80 $T-mg = {{mv^2} \over r}$ at lowest point
81
82% -----------------------
83 \subsection*{Projectile motion}
84 \begin{itemize}
85 \item{horizontal component of velocity is constant if no air resistance}
86 \item{vertical component affected by gravity: $a_y = -g$}
87 \end{itemize}
88
89 \begin{align*}
90 v=\sqrt{v^2_x + v^2_y} \tag{vectors} \\
91 h={{u^2\sin \theta ^2}\over 2g} \tag{max height}\\
92 x=ut\cos\theta \tag{$\Delta x$ at $t$} \\
93 y=ut \sin \theta-{1 \over 2}gt^2 \tag{height at $t$} \\
94 t={{2u\sin\theta}\over g} \tag{time of flight}\\
95 d={v^2 \over g}\sin \theta \tag{horiz. range} \\
96 \end{align*}
97
98 \includegraphics[height=3.2cm]{graphics/projectile-motion.png}
99
100% -----------------------
101 \subsection*{Pulley-mass system}
102
103 $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
104
105 $\Sigma F = m_2g-m_1g=\Sigma ma$ (solve)
106
107% -----------------------
108 \subsection*{Graphs}
109 \begin{itemize}
110 \item{Force-time: $A=\Delta \rho$}
111 \item{Force-disp: $A=W$}
112 \item{Force-ext: $m=k,\quad A=E_{spr}$}
113 \item{Force-dist: $A=\Delta \operatorname{gpe}$}
114 \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
115 \end{itemize}
116
117% -----------------------
118 \subsection*{Hooke's law}
119
120 $F=-kx$
121
122 $\text{elastic potential energy} = {1 \over 2}kx^2$
123
124 $x={2mg \over k}
125
126% -----------------------
127 \subsection*{Motion equations}
128
129 \begin{tabular}{ l r }
130 & no \\
131 $v=u+at$ & $x$ \\
132 $x = {1 \over 2}(v+u)t$ & $a$ \\
133 $x=ut+{1 \over 2}at^2$ & $v$ \\
134 $x=vt-{1 \over 2}at^2$ & $u$ \\
135 $v^2=u^2+2ax$ & $t$ \\
136 \end{tabular}
137
138% -----------------------
139 \subsection*{Momentum}
140
141 $\rho = mv$
142
143 $\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
144
145 $\Sigma mv_0=\Sigma mv_1$ (conservation)
146
147 $\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
148
149 $n$-body collisions: $\rho$ of each body is independent
150
151% ++++++++++++++++++++++
152\section{Relativity}
153
154 \subsection*{Postulates}
155 1. Laws of physics are constant in all intertial reference frames
156
157 2. Speed of light $c$ is the same to all observers (Michelson-Morley)
158
159 $\therefore \, t$ must dilate as speed changes
160
161 {\bf Inertial reference frame} $a=0$
162
163 {\bf Proper time $t_0$ $\vert$ length $l_0$} measured by observer in same frame as events
164
165% -----------------------
166 \subsection*{Lorentz factor}
167
168 $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
169
170 $t=t_0 \gamma$ ($t$ longer in moving frame)
171
172 $l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
173
174 $m=m_0 \gamma$ (mass dilation)
175
176 $$v = c\sqrt{1-{1 \over \gamma^2}}$$
177
178% -----------------------
179 \subsection*{Energy and work}
180
181 $E_0 = mc^2$ (rest)
182
183 $E_{total} = E_K + E_{rest} = \gamma mc^2$
184
185 $E_K = (\gamma 1)mc^2$
186
187 $W = \Delta E = \Delta mc^2$
188
189% -----------------------
190 \subsection*{Relativistic momentum}
191
192 $$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
193
194 $\rho \rightarrow \infty$ as $v \rightarrow c$
195
196 $v=c$ is impossible (requires $E=\infty$)
197
198 $$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
199
200% -----------------------
201 \subsection*{High-altitude muons}
202 \begin{itemize}
203 {\item $t$ dilation more muons reach Earth than expected}
204 {\item normal half-life $2.2 \operatorname{\mu s}$ in stationary frame, $> 2.2 \operatorname{\mu s}$ observed from Earth}
205 \end{itemize}
206
207% +++++++++++++++++++++++
208\section{Fields and power}
209
210 \subsection*{Non-contact forces}
211 \begin{itemize}
212 {\item electric fields (dipoles \& monopoles)}
213 {\item magnetic fields (dipoles only)}
214 {\item gravitational fields (monopoles only)}
215 \end{itemize}
216
217 \vspace{1em}
218
219 \begin{itemize}
220 \item monopoles: lines towards centre
221 \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (or perpendicular to wire)
222 \item closer field lines means larger force
223 \item dot: out of page, cross: into page
224 \item +ve corresponds to N pole
225 \end{itemize}
226
227 \includegraphics[height=2cm]{graphics/field-lines.png}
228 % \includegraphics[height=2cm]{graphics/bar-magnet-fields-rotated.png}
229
230% -----------------------
231 \subsection*{Gravity}
232
233 \[F_g=G{{m_1m_2}\over r^2}\tag{grav. force}\]
234 \[g={F_g \over m_2}=G{m_{1} \over r^2}\tag{field of $m_1$}\]
235 \[E_g = mg \Delta h\tag{gpe}\]
236 \[W = \Delta E_g = Fx\tag{work}\]
237 \[w=m(g-a) \tag{app. weight}\]
238
239 % \columnbreak
240
241% -----------------------
242 \subsection*{Satellites}
243
244 \[v=\sqrt{Gm_{\operatorname{planet}} \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
245
246 \[T={\sqrt{4 \pi^2 r^3} \over {GM}}\tag{period}\]
247
248 \[\sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
249
250% -----------------------
251 \subsection*{Magnetic fields}
252 \begin{itemize}
253 \item field strength $B$ measured in tesla
254 \item magnetic flux $\Phi$ measured in weber
255 \item charge $q$ measured in coulombs
256 \item emf $\mathcal{E}$ measured in volts
257 \end{itemize}
258
259 % \[{E_1 \over E_2}={r_1 \over r_2}^2\]
260
261 \[F=qvB\tag{$F$ on moving $q$}\]
262 \[F=IlB\tag{$F$ of $B$ on $I$}\]
263 \[B={mv \over qr}\tag{field strength on e-}\]
264 \[r={mv \over qB} \tag{radius of $q$ in $B$}\]
265
266 if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
267
268% -----------------------
269 \subsection*{Electric fields}
270
271 \[F=qE \tag{$E$ = strength} \]
272 \[F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \]
273 \[E=k{q \over r^2} \tag{field on point charge} \]
274 \[E={V \over d} \tag{field between plates}\]
275 \[F=BInl \tag{force on a coil} \]
276 \[\Phi = B_{\perp}A\tag{magnetic flux} \]
277 \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \]
278 \[{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \]
279
280 \textbf{Lenz's law:} $I_{\operatorname{emf}}$ opposes $\Delta \Phi$ \\
281 % emf is gradient of flux-time graph
282
283 \textbf{Eddy currents:} counter movement within a field
284
285 \textbf{Right hand grip:} thumb points to $I$ (single wire) or N (solenoid / coil)
286
287 \includegraphics[height=2cm]{graphics/slap-2.jpeg}
288 \includegraphics[height=3cm]{graphics/grip.png}
289
290 % \textbf{Right hand slap:} $B \perp I \perp F$ \\
291 % ($I$ = thumb)
292
293 \textbf{Flux-time graphs:} $m \times n = \operatorname{emf}$
294
295 \textbf{Transformers:} core strengthens \& focuses $\Phi$
296
297% -----------------------
298 \subsection*{Particle acceleration}
299
300 $1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
301
302 e- accelerated with $x$ V is given $x$ eV
303
304 \[W={1\over2}mv^2=qV \tag{field or points}\]
305 \[v=\sqrt{{2qV} \over {m}}\tag{velocity of particle}\]
306
307
308% -----------------------
309 \subsection*{Power transmission}
310
311 % \begin{align*}
312 \[V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \]
313 \[P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \]
314 \[V_{\operatorname{loss}}=IR \]
315 % \end{align*}
316
317 Use high-$V$ side for correct $|V_{drop}|$
318
319 \begin{itemize}
320 {\item Parallel $V$ is constant}
321 {\item Series $V$ shared within branch}
322 \end{itemize}
323
324 \includegraphics[height=4cm]{graphics/ac-generator.png}
325
326% -----------------------
327 \subsection*{Motors}
328% \begin{wrapfigure}{r}{-0.1\textwidth}
329
330 \includegraphics[height=4cm]{graphics/dc-motor-2.png}
331 \includegraphics[height=3cm]{graphics/ac-motor.png} \\
332
333 $F=0$ for front & back of coil (parallel) \\
334 Any angle $> 0$ will produce force \\
335% \end{wrapfigure}
336 \textbf{DC:} split ring (two halves)
337
338% \begin{wrapfigure}{r}{0.3\textwidth}
339
340% \end{wrapfigure}
341 \textbf{AC:} slip ring (separate rings with constant contact)
342
343% \pagebreak
344
345% +++++++++++++++++++++++
346\section{Waves}
347
348 \textbf{nodes:} fixed on graph \\
349 \textbf{amplitude:} max disp. from $y=0$ \\
350 \textbf{rarefactions} and \textbf{compressions} \\
351 \textbf{mechanical:} transfer of energy without net transfer of matter \\
352
353
354 \textbf{Longitudinal (motion $||$ wave)}
355 \includegraphics[width=6cm]{graphics/longitudinal-waves.png}
356
357 \textbf{Transverse (motion $\perp$ wave)}
358 \includegraphics[width=6cm]{graphics/transverse-waves.png}
359
360 % -----------------------
361 $T={1 \over f}\quad$(period: time for one cycle)
362 $v=f \lambda \quad$(speed: displacement / sec)
363
364 % -----------------------
365 \subsection*{Doppler effect}
366 When $P_1$ approaches $P_2$, each wave $w_n$ has slightly less distance to travel than $w_{n-1}$. $w_n$ reaches observer sooner than $w_{n-1}$ ("apparent" $\lambda$).
367
368 % -----------------------
369 \subsection*{Interference}
370
371
372
373 \textbf{Standing waves} - constructive int. at resonant freq
374
375 \subsection*{Harmonics}
376
377
378 \(\lambda = {{al} \div n}\quad\) (\(\lambda\) for \(n^{th}\) harmonic)\\
379 \(f = {nv \div al}\quad\) (\(f\) for \(n_{th}\) harmonic at length
380 \(l\) and speed \(v\)) \\
381 where \(a=2\) for antinodes at both ends, \(a=4\) for antinodes at one end
382
383 % -----------------------
384 \subsection*{Polarisation}
385 \includegraphics[height=3.5cm]{graphics/polarisation.png}
386
387 % -----------------------
388 \subsection*{Diffraction}
389 \includegraphics[width=6cm]{graphics/diffraction.jpg}
390 \includegraphics[width=6cm]{graphics/diffraction-2.png}
391 \begin{itemize}
392 % \item \(pd = |S_1P-S_2P|\) for \(p\) on screen
393 \item Constructive: \(pd = n\lambda, n \in \mathbb{Z}\)
394 \item Destructive: \(pd = (n-{1 \over 2})\lambda, n \in \mathbb{Z}\)
395 \item Path difference: \(\Delta x = {{\lambda l }\over d}\) where \\
396 % \(\Delta x\) = fringe spacing \\
397 \(l\) = distance from source to observer\\
398 \(d\) = separation between each wave source (e.g. slit) \(=S_1-S_2\)
399 \item significant diffraction when ${\lambda \over \Delta x} \ge 1$
400 \end{itemize}
401
402
403
404 % -----------------------
405 \subsection*{Refraction}
406 \includegraphics[height=3.5cm]{graphics/refraction.png}
407
408 When a medium changes character, energy is \emph{reflected}, \emph{absorbed}, and \emph{transmitted}
409
410 angle of incidence $\theta_i =$ angle of reflection $\theta_r$
411
412 Critical angle $\theta_c = \sin^-1{n_2 \over n_1}$
413
414 Snell's law $n_1 \sin \theta_1=n_2 \sin \theta_2$
415
416
417% +++++++++++++++++++++++
418\section{Light and Matter}
419
420 % -----------------------
421 \subsection*{Planck's equation}
422
423 \[ f={c \over \lambda},\quad E=hf={hc \over \lambda}=\rho c \]
424 \[ h=6.63 \times 10^{-34}\operatorname{J s}=4.14 \times 10^{-15} \operatorname{eV s} \]
425 \[ 1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J} \]
426
427 \subsection*{Force of electrons}
428 \[ F={2P_{\text{in}}\over c} \]
429 % \begin{align*}
430 \[ \text{photons / sec} = {\text{total energy} \over \text{energy / photon}} \]
431 \[ ={{P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf} \]
432 % ={P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf}
433 % \end{align*}
434
435 \subsection*{Photoelectric effect}
436
437 \begin{itemize}
438 \item $V_{\operatorname{supply}}$ does not affect photocurrent
439 \item $V_{\operatorname{sup}} > 0$: e- attracted to collector anode
440 \item $V_{\operatorname{sup}} < 0$: attracted to illuminated cathode, $I\rightarrow 0$
441 \item $v$ of depends on ionisation energy (shell)
442 \item max current depends on intensity
443 \end{itemize}
444
445 \textbf{Threshold frequency $f_0$}
446
447 Minimum $f$ for photoelectrons to be ejected. $x$-intercept of frequency vs $E_K$ graph. if $f < f_0$, no photoelectrons are detected.
448
449 \textbf{Work function $\phi$}
450
451 Minimum $E$ required to release photoelectrons. Magnitude of $y$-intercept of frequency vs $E_K$ graph. $\phi$ is determined by strength of bonding.
452
453 $\phi=hf_0$
454
455 \textbf{Kinetic energy}
456
457 E_{\operatorname{k-max}}=hf - \phi
458
459 voltage in circuit or stopping voltage = max $E_K$ in eV
460 equal to $x$-intercept of volts vs current graph (in eV)
461
462 \textbf{Stopping potential $V$ for min $I$}
463
464 $V=h_{\text{eV}}(f-f_0)$
465
466 % \columnbreak
467
468 \subsection*{De Broglie's theory}
469
470 \[ \lambda = {h \over \rho} = {h \over mv} \]
471 \[ \rho = {hf \over c} = {h \over \lambda} = mv, \quad E = \rho c \]
472 \begin{itemize}
473 \item cannot confirm with double-slit (slit $< r_{\operatorname{proton}}$)
474 \item confirmed by similar e- and x-ray diff patterns
475 \end{itemize}
476
477 \subsection*{X-ray electron interaction}
478
479 \begin{itemize}
480 \item e- is only stable if $mvr = n{h \over 2\pi}$ where $n \in \mathbb{Z}$
481 \item rearranging this, $2\pi r = n{h \over mv} = n \lambda$ (circumference)
482 \item if $2\pi r \ne n{h \over mv}$, no standing wave
483 \item if e- = x-ray diff patterns, $E_{\text{e-}}={\rho^2 \over 2m}={({h \over \lambda})^2 \div 2m}$
484 \item calculating $h$: $\lambda = {h \over \rho}$
485 \end{itemize}
486
487 \subsection*{Spectral analysis}
488
489 \begin{itemize}
490 \item $\Delta E = hf = {hc \over \lambda}$ between ground / excited state
491 \item $E$ and $f$ of photon: $E_2 - E_1 = hf = {hc \over \lambda}$
492 \item Ionisation energy - min $E$ required to remove e-
493 \item EMR is absorbed/emitted when $E_{\operatorname{K-in}}=\Delta E_{\operatorname{shells}}$ (i.e. $\lambda = {hc \over \Delta E_{\operatorname{shells}}}$)
494 \item No. of lines - include all possible states
495 \end{itemize}
496
497 \subsection*{Uncertainty principle}
498
499 measuring location of an e- requires hitting it with a photon, but this causes $\rho$ to be transferred to electron, moving it.
500
501 \subsection*{Wave-particle duaity}
502
503 \subsubsection*{wave model}
504 \begin{itemize}
505 \item cannot explain photoelectric effect
506 \item $f$ is irrelevant to photocurrent
507 \item predicts delay between incidence and ejection
508 \item speed depends on medium
509 \end{itemize}
510
511 \subsubsection*{particle model}
512
513 \begin{itemize}
514 \item explains photoelectric effect
515 \item rate of photoelectron release $\propto$ intensity
516 \item no time delay - one photon releases one electron
517 \item double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
518 \item light exerts force
519 \item light bent by gravity
520 \item quantised energy
521 \end{itemize}
522
523 % +++++++++++++++++++++++
524 \section{Experimental \\ design}
525
526 \textbf{Absolute uncertainty} $\Delta$ \\
527 (same units as quantity)
528 \[ \Delta(m) = {{\mathcal{E}(m)} \over 100} \cdot m \]
529 \[ (A \pm \Delta A) + (B \pm \Delta A) = (A+B) \pm (\Delta A + \Delta B) \]
530 \[ (A \pm \Delta A) - (B \pm \Delta A) = (A-B) \pm (\Delta A + \Delta B) \]
531 \[ c(A \pm \Delta A) = cA \pm c \Delta A \]
532
533 \textbf{Relative uncertainty} $\mathcal{E}$ (unitless)
534 \[ \mathcal{E}(m) = {{\Delta(m)} \over m} \cdot 100 \]
535 \[ (A \pm \mathcal{E} A) \cdot (B \pm \mathcal{E} B) = (A \cdot B) \pm (\mathcal{E} A + \mathcal{E} B) \]
536 \[ (A \pm \mathcal{E} A) \div (B \pm \mathcal{E} B) = (A \div B) \pm (\mathcal{E} A + \mathcal{E} B) \]
537 \[ (A \pm \mathcal{E} A)^n = (A^n \pm n \mathcal{E} A) \]
538 \[ c(A \pm \mathcal{E} A)=cA \pm \mathcal{E} A \]
539
540 Uncertainty of a measurement is $1 \over 2$ the smallest division
541
542 \textbf{Precision} - concordance of values \\
543 \textbf{Accuracy} - closeness to actual value\\
544 \textbf{Random errors} - unpredictable, reduced by more tests \\
545 \textbf{Systematic errors} - not reduced by more tests
546
547 \columnbreak
548
549 \quad
550
551
552
553
554
555
556\end{multicols}
557
558% \includegraphics[height=5cm]{graphics/em-spectrum.png}
559
560\end{document}