1---
2geometry: margin=2cm
3<!-- columns: 2 -->
4graphics: yes
5tables: yes
6author: Andrew Lorimer
7---
8
9# Spec - Calculus
10
11## Gradients
12
13$$m \operatorname{of} x \in [a,b] = {{f(b)-f(a)}\over {b - a}} = {dy \over dx}$$
14
15## Limit theorems
16
171. For constant function $f(x)=k$, $\lim_{x \rightarrow a} f(x) = k$
182. $\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G$
193. $\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G$
204. ${\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0$
21
22
23## First principles derivative
24
25$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$
26
27
28## Tangents & gradients
29
30**Tangent line** - defined by $y=mx+c$ where $m={dy \over dx}$
31**Normal line** - $\perp$ tangent ($m_{\operatorname{tan}} \cdot m_{\operatorname{norm}} = -1$)
32**Secant** $={{f(x+h)-f(x)} \over h}$
33
34## Derivatives
35
36| $f(x)$ | $f^\prime(x)$ |
37| ------ | ------------- |
38| $kx^n$ | $knx^{n-1}$ |
39| $g(x) + h(x)$ | $g^\prime (x) + h^\prime (x)$ |
40| $c$ | $0$ |
41| ${u \over v}$ | ${{v{du \over dx} - u{dv \over dx}} \over v^2}$ |
42| $uv$ | $u{dv \over dx} + v{du \over dx}$ |
43| $f \circ g$ | ${dy \over du} \cdot {du \over dx}$ |
44| $\sin ax$ | $a\cos ax$ |
45| $\sin(f(x))$ | $f^\prime(x) \cdot \cos(f(x))$ |
46| $\cos ax$ | $-a \sin ax$ |
47| $e^{ax}$ | $ae^{ax}$ |
48| $\log_e {ax}$ | $1 \over x$ |
49| $\log_e f(x)$ | $f^\prime (x) \over f(x)$ |
50
51
52
53## Product rule for $y=uv$
54
55$${dy \over dx} = u{dv \over dx} + v{du \over dx}$$
56
57## Logarithms
58
59$$\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x$$
60
61## Integration
62
63$$\int f(x) dx = F(x) + c$$
64
65- area enclosed by curves
66
67| $f(x)$ | $\int f(x) \cdot dx$ |
68| --------------- | ------------------ |
69| $k$ (constant) | $kx + c$ |
70| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
71| $a x^{-n}$ | $a \cdot \log_e x + c$ |
72| $e^{kx}$ | ${1 \over k} e^{kx} + c$ |
73| $e^k$ | $e^kx + c$ |
74| $\sin kx$ | $-{1 \over k} \cos (kx) + c$ |
75| $\cos kx$ | ${1 \over k} \sin (kx) + c$ |
76| ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ |
77| $g^\prime(x)\cdot f^\prime(g(x)$ | $f(g(x))$ (chain rule)|
78| $f(x) \cdot g(x)$ | $\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx$ |
79| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ |
80| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ |
81
82
83## Definite integrals
84
85$$\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)_{}$$
86
87## Kinematics
88
89**position $x$** - distance from origin or fixed point
90**displacement $s$** - change in position from starting point (vector)
91**velocity $v$** - change in position with respect to time
92**acceleration $a$** - change in velocity
93**speed** - magnitude of velocity
94
95| | no |
96| - | -- |
97| $v=u+at$ | $s$ |
98| $s=ut + {1 \over 2} at^2$ | $v$ |
99| $v^2 = u^2 + 2as$ | $t$ |
100| $s= {1 \over 2}(u+v)t$ | $a$ |