1\documentclass[a4paper]{article}
2
3\usepackage[a4paper]{geometry}
4\usepackage{multicol}
5\usepackage[cm]{fullpage}
6\usepackage{amsmath}
7\setlength{\parindent}{0cm}
8\usepackage[nodisplayskipstretch]{setspace}
9\setstretch{1.5}
10\usepackage{graphicx}
11\usepackage{wrapfig}
12
13
14\begin{document}
15
16\pagenumbering{gobble}
17\begin{multicols}{3}
18{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
19
20\section{Motion}
21 \subsection*{Unit conversion}
22 $\operatorname{m/s} \times 3.6 = \operatorname{km/h}$
23
24 \subsection*{Inclined planes}
25 $F = m g \sin\theta - F_{frict} = m a$
26
27 \subsection*{Banked tracks}
28 \includegraphics[height=4cm]{/mnt/andrew/graphics/banked-track.png}
29 $\theta = \tan^{-1} {{v^2} \over rg}$ (also for objects on string)
30
31 $\Sigma F$ always acts towards centre, but not necessarily horizontally
32
33 $\Sigma F = {{mv^2} \over r} = mg \tan \theta$
34
35 Design speed $v = \sqrt{gr\tan\theta}$
36
37 \subsection*{Work and energy}
38 $W=Fx=\Delta \Sigma E$ (work)
39
40 $E_K = {1 \over 2}mv^2$ (kinetic)
41
42 $E_G = mgh$ (potential)
43
44 $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
45
46 \subsection*{Horizontal motion}
47
48 $v = {{2 \pi r} \over T}$
49
50 $f = {1 \over T}, \quad T = {1 \over f}$
51
52 $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
53
54 $\Sigma F$ towards centre, $v$ tangential
55
56 $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
57
58 \includegraphics[height=4cm]{/mnt/andrew/graphics/circ-forces.png}
59
60 \subsection*{Vertical circular motion}
61 $T =$ tension, e.g. circular pendulum
62
63 $T+mg = {{mv^2}\over r}$ at highest point
64 $T-mg = {{mv^2} \over r}$ at lowest point
65
66 \subsection*{Projectile motion}
67 \begin{itemize}
68 \item{horizontal component of velocity is constant if no air resistance}
69
70 \item{vertical component affected by gravity: $a_y = -g$}
71\end{itemize}
72
73$v=\sqrt{v^2_x + v^2_y}$ (vector addition)
74
75$h={{u^2\sin \theta ^2}\over 2g}$ (max height)
76
77$y=ut \sin \theta-{1 \over 2}gt^2$ (time of flight)
78
79$d={v^2 \over g}sin \theta$ (horizontal range)
80 \includegraphics[height=4cm]{/mnt/andrew/graphics/projectile-motion.png}
81
82 \subsection*{Pulley-mass system}
83
84 $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
85
86 \subsection*{Graphs}
87 \begin{itemize}
88 \item{Force-time: $A=\Delta \rho$}
89 \item{Force-disp: $A=W$}
90 \item{Force-ext: $m=k,\quad A=E_{spr}$}
91 \end{itemize}
92
93 \subsection*{Hooke's law}
94
95 $F=-kx$
96
97 $E_{elastic} = {1 \over 2}kx^2$
98
99 \subsection*{Motion equations}
100
101
102\begin{tabular}{ l r }
103 $v=u+at$ & $x$ \\
104 $x = {1 \over 2}(v+u)t$ & $a$ \\
105 $x=ut+{1 \over 2}at^2$ & $v$ \\
106 $x=vt-{1 \over 2}at^2$ & $u$ \\
107 $v^2=u^2+2ax$ & $t$ \\
108\end{tabular}
109
110\subsection*{Momentum}
111
112$\rho = mv$
113
114$\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
115
116Momentum is conserved.
117
118$\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
119
120\section{Relativity}
121
122
123
124
125
126
127
128\end{multicols}
129\end{document}