1# Complex & Imaginary Numbers
2
3## Imaginary numbers
4
5$i^2 = -1$
6
7$\therefore i = \sqrt {-1}$
8
9### Simplifying negative surds
10
11$\sqrt{-2} = \sqrt{-1 \times 2}$
12
13 $= \sqrt{2}i$
14
15
16## Complex numbers
17
18$\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}$
19
20General form: $z=a+bi$
21- $\operatorname{Re}(z) = a$
22- $\operatorname{Im}(z) = b$
23
24### Addition
25
26If $z_1 = a+bi$ and $z_2=c+di$, then
27
28 $z_1+z_2 = (a+c)+(b+d)i$
29
30### Subtraction
31
32If $z_1=a+bi$ and $z_2=c+di$, then
33
34 $z_1−z_2=(a−c)+(b−d)i$
35
36### Multiplication by a real constant
37
38If $z=a+bi$ and $k \in \mathbb{R}$, then
39
40 $kz=ka+kbi$
41
42### Powers of $i$
43$i^0=1$
44$i^1=i$
45$i^2=-1$
46$i^3=-i$
47$i^4=1$
48$\dots$
49
50Therefore..
51- $i^{4n} = 1$
52- $i^{4n+1} = i$
53- $i^{4n+2} = -1$
54- $i^{4n+3} = -i$
55
56Divide by 4 and take remainder
57
58### Multiplying complex expressions
59
60If $z_1 = a+bi$ and $z_2=c+di$, then
61 $z_1 \times z_2 = (ac-bd)+(ad+bc)i$
62
63### Conjugates
64
65If $z=a+bi$, conjugate of $z$ is $\overline{z} = a-bi$ (flipped operator)
66
67Also, $z \overline{z} = (a+bi)(a-bi) = a^2+b^2$
68
69- Multiplication and addition are associative
70
71### Modulus
72
73Distance from origin.
74$|{z}|=\sqrt{a^2+b^2}$
75
76$\therefore z \overline{z} = |z|^2$
77
78### Multiplicative inverse
79
80$z^{-1} = {1 \over z} = {{a-bi} \over {a^2+B^2}} = {\overline{z} \over {|z|^2}}$
81
82### Dividing complex numbers
83
84${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}}$
85
86(using multiplicative inverse)
87
88In practice, rationalise denominator:
89${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$
90
91## Argand planes
92
93- Geometric representation of $\mathbb{C}$
94- Horizontal $= \operatorname{Re}(z)$; vertical $= \operatorname{Im}(z)$
95- Multiplication by $i$ results in an anticlockwise rotation of $\pi \over 2$
96
97## Solving complex quadratics
98
99To solve $z^2+a^2=0$ (sum of two squares):
100
101$z^2+a^2=z^2-(ai)^2$
102 $=(z+ai)(z-ai)$
103
104## Polar form
105
106General form:
107$z=r \operatorname{cis} \theta$
108$= r\operatorname{cos}\theta+r\operatorname{sin}\theta i$
109
110where
111- $z=a+bi$
112- $r$ is the distance from origin, given by Pythagoras ($r=\sqrt{x^2+y^2}$)
113- $\theta$ is the argument of $z$, CCW from origin
114
115Note each complex number has multiple polar representations:
116$z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ is integer number of revolutions
117
118### Multiplication and division in polar form
119
120$z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)$ (multiply moduli, add angles)
121
122${z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)$ (divide moduli, subtract angles)
123
124## de Moivres' Theorum
125
126$(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta)$