1\documentclass[a4paper, tikz]{article} 2\usepackage[a4paper,margin=2cm]{geometry} 3\usepackage{array} 4\usepackage{amsmath} 5\usepackage{amssymb} 6\usepackage{tcolorbox} 7\usepackage{fancyhdr} 8\usepackage{pgfplots} 9\usepackage{tikz} 10\usetikzlibrary{arrows, 11 calc, 12 decorations, 13 scopes, 14} 15\usepackage{tabularx} 16\usepackage{keystroke} 17\usepackage{listings} 18\usepackage{xcolor}% used only to show the phantomed stuff 19\definecolor{cas}{HTML}{e6f0fe} 20 21\pagestyle{fancy} 22\fancyhead[LO,LE]{Year 12 Specialist - Dynamics} 23\fancyhead[CO,CE]{Andrew Lorimer} 24 25\setlength\parindent{0pt} 26 27\begin{document} 28 29\title{Dynamics} 30\author{} 31\date{} 32\maketitle 33 34\section{Resolution of forces} 35 36\textbf{Resultant force} is sum of force vectors 37 38\subsection{In angle-magnitude form} 39 40\makebox[3cm]{Cosine rule:} \(c^2=a^2+b^2-2ab\cos\theta\) 41\makebox[3cm]{Sine rule:} \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\) 42 43\subsection{In \(\boldsymbol{i}\)---\(\boldsymbol{j}\) form} 44 45 Vector of \(a\) N at \(\theta\) to \(x\) axis is equal to \(a \cos \theta \boldsymbol{i} + a \sin \theta \boldsymbol{j}\). Convert all force vectors then add. 46 47 To find angle of an \(a\boldsymbol{i} + b\boldsymbol{j}\) vector, use \(\theta = \tan^{-1}\frac{b}{a}\) 48 49\subsection{Resolving in a given direction} 50 51 The resolved part of a force \(P\) at angle \(\theta\) is has magnitude \(P \cos \theta\) 52 53\section{Newton's laws} 54 55\begin{enumerate} 56\item Velocity is constant without a net external velocity 57\item \(\frac{d}{dt}\rho \propto \Sigma F \implies \boldsymbol{F}=m\boldsymbol{a}\) 58\item Equal and opposite forces 59\end{enumerate} 60 61\subsection{Weight} 62 A mass of \(m\) kg has force of \(mg\) acting on it 63 64\subsection{Momentum \(\rho\)} 65 \[\rho = mv \tag{units kg m/s or Ns} \] 66 67\subsection{Reaction force \(R\)} 68 69\begin{itemize} 70\item With no vertical velocity, \(R=mg\) 71\item With upwards acceleration, \(R-mg=ma\) 72\item With force \(F\) at angle \(\theta\), then \(R=mg-F\sin\theta\) 73\end{itemize} 74 75\subsection{Friction} 76 77 \[ F_R = \mu R \tag{friction coefficient} \] 78 79\section{Inclined planes} 80 81 \[\boldsymbol{F} = |\boldsymbol{F}| \cos \theta \boldsymbol{i} + |\boldsymbol{F}| \sin \theta \boldsymbol{j} \] 82\def\iangle{30}% Angle of the inclined plane 83 84\def\down{-90} 85\def\arcr{0.5cm}% Radius of the arc used to indicate angles 86 87\begin{tikzpicture}[ 88 >=latex', 89 scale=1, 90 force/.style={->,draw=blue,fill=blue}, 91 axis/.style={densely dashed,gray,font=\small}, 92 M/.style={rectangle,draw,fill=lightgray,minimum size=0.5cm,thin}, 93 m/.style={rectangle,draw=black,fill=lightgray,minimum size=0.3cm,thin}, 94 plane/.style={draw=black,fill=blue!10}, 95 string/.style={draw=red, thick}, 96 pulley/.style={thick}, 97] 98\pgfmathsetmacro{\Fnorme}{2} 99\pgfmathsetmacro{\Fangle}{30} 100\begin{scope}[rotate=\iangle] 101\node[M,transform shape] (M) {}; 102\coordinate (xmin) at ($(M.south west)-({abs(1.1*\Fnorme*sin(-\Fangle))},0)$); 103\coordinate (xmax) at ($(M.south east)+({abs(1.1*\Fnorme*sin(-\Fangle))},0)$); 104\coordinate (ymax) at ($(M.north)+(0, {abs(1.1*\Fnorme*cos(-\Fangle))})$); 105\coordinate (ymin) at ($(M.south)-(0, 1cm)$); 106\coordinate (axiscentre) at ($(M.south)+(0.5cm, 0.5cm)$); 107\draw[postaction={decorate, decoration={border, segment length=2pt, angle=-45},draw,red}] (xmin) -- (xmax); 108\coordinate (N) at ($(M.center)+(0,{\Fnorme*cos(-\Fangle)})$); 109\coordinate (fr) at ($(M.center)+({\Fnorme*sin(-\Fangle)}, 0)$); 110% Draw axes and help lines 111 112{[axis,->] 113\draw (ymin) -- (ymax) node[right] {\(\boldsymbol{j}\)}; 114\draw (M) --(M-|xmax) node[right] {\(\boldsymbol{i}\)}; % mental note for me: change "right" to "above" 115} 116 117% Forces 118{[force,->] 119% Assuming that Mg = 1. The normal force will therefore be cos(alpha) 120\draw (M.center) -- (N) node [right] {\(R\)}; 121\draw (M.center) -- (fr) node [left] {\(\mu R\)}; 122} 123% \draw [densely dotted, gray] (fr) |- (N) node [pos=.25, left] {\tiny$\lVert \vec F\rVert\cos\theta$} node [pos=.75, above] {\tiny$\lVert \vec F\rVert\sin\theta$}; 124\end{scope} 125% Draw gravity force. The code is put outside the rotated 126% scope for simplicity. No need to do any angle calculations. 127\draw[force,->] (M.center) -- ++(0,-1) node[below] {$mg$}; 128\draw (M.center)+(-90:\arcr) arc [start angle=-90,end angle=\iangle-90,radius=\arcr] node [below, pos=.5] {\tiny\(\theta\)}; 129\end{tikzpicture} 130 131\subsection{Connected particles} 132 133\begin{itemize} 134\item \textbf{Suspended pulley:} tension in both sections of rope are equal 135\item \textbf{Linear connection:} find acceleration of system first 136\item \textbf{Pulley on edge of incline:} find downwards force \(W_2\) and components of mass on plane 137\end{itemize} 138 139\end{document}