physics / final.texon commit [chem] proteins (3e6f607)
   1\documentclass[a4paper]{article}
   2\usepackage{multicol}
   3\usepackage[cm]{fullpage}
   4\usepackage{amsmath}
   5\usepackage{amssymb}
   6\setlength{\parindent}{0cm}
   7\usepackage[nodisplayskipstretch]{setspace}
   8\setstretch{1.3}
   9\usepackage{graphicx}
  10\usepackage{wrapfig}
  11\usepackage{enumitem}
  12\usepackage{supertabular}
  13\usepackage{tabularx}
  14\setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt,leftmargin=5pt}
  15
  16
  17\begin{document}
  18
  19\pagenumbering{gobble}
  20\begin{multicols}{3}
  21
  22% +++++++++++++++++++++++
  23
  24{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
  25
  26% +++++++++++++++++++++++
  27\section{Motion}
  28
  29  $\operatorname{m/s} \, \times \, 3.6 = \operatorname{km/h}$
  30
  31  \subsection*{Inclined planes}
  32    $F = m g \sin\theta - F_{\text{frict}} = m a$
  33
  34% -----------------------
  35  \subsection*{Banked tracks}
  36
  37    \includegraphics[height=4cm]{graphics/banked-track.png}
  38
  39    $\theta = \tan^{-1} {{v^2} \over rg}$
  40
  41    $\Sigma F$ always acts towards centre (horizontally)
  42
  43    $\Sigma F = F_{\operatorname{norm}} + F_{\operatorname{g}}={{mv^2} \over r} = mg \tan \theta$
  44
  45    Design speed $v = \sqrt{gr\tan\theta}$
  46
  47    $n\sin \theta = {mv^2 \div r}, \quad n\cos \theta = mg$
  48
  49% -----------------------
  50  \subsection*{Work and energy}
  51
  52    $W=Fs=Fs \cos \theta=\Delta \Sigma E$
  53
  54    $E_K = {1 \over 2}mv^2$ (kinetic)
  55
  56    $E_G = mgh$ (potential)
  57
  58    $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
  59
  60% -----------------------
  61  \subsection*{Horizontal circular motion}
  62
  63    $v = {{2 \pi r} \over T}$
  64
  65    $f = {1 \over T}, \quad T = {1 \over f}$
  66
  67    $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
  68
  69    $\Sigma F, a$ towards centre, $v$ tangential
  70
  71    $\Sigma F = F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}=T \sin \theta = mg \tan \theta$
  72
  73    \includegraphics[height=4cm]{graphics/circ-forces.png}
  74
  75% -----------------------
  76  \subsection*{Vertical circular motion}
  77
  78    % $T =$ tension, e.g. circular pendulum
  79
  80    $T+mg = {{mv^2}\over r}, v = \sqrt{rg}$ (top)
  81
  82    $T-mg = {{mv^2} \over r}, v = \sqrt{2rg}$ (bottom)
  83
  84    $E_K_{\text{bottom}}=E_K_{\text{top}}+mgh$
  85
  86% -----------------------
  87  \subsection*{Projectile motion}
  88    \begin{itemize}
  89      \item $v_x$ is constant: $v_x = {s \over t}$
  90      \item use suvat to find $t$ from $y$-component
  91      \item vertical component gravity: $a_y = -g$
  92    \end{itemize}
  93
  94    % \begin{align*}
  95      $v=\sqrt{v^2_x + v^2_y}$ \hfill vectors \\
  96      $h={{u^2\sin \theta ^2}\over 2g}$ \hfill max height \\
  97      $x=ut\cos\theta$ \hfill $\Delta x$ at $t$ \\
  98      $y=ut \sin \theta-{1 \over 2}gt^2$ \hfill height at $t$ \\
  99      $t={{2u\sin\theta}\over g}$ \hfill time of flight \\
 100      $d={v^2 \over g}\sin \theta$ \hfill horiz. range \\
 101    % \end{align*}
 102
 103    \includegraphics[height=3.2cm]{graphics/projectile-motion.png}
 104
 105% -----------------------
 106  \subsection*{Pulley-mass system}
 107
 108    $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
 109
 110    $\Sigma F = m_2g-m_1g=\Sigma ma$ (solve)
 111
 112% -----------------------
 113  \subsection*{Graphs}
 114    \begin{itemize}
 115      \item{Force-time: $A=\Delta \rho$}
 116      \item{Force-disp: $A=W$}
 117      \item{Force-ext: $m=k,\quad A=E_{spr}$}
 118      \item{$F_g$-dist: $A=\Delta \operatorname{gpe}$}
 119      \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
 120    \end{itemize}
 121
 122% -----------------------
 123  \subsection*{Hooke's law}
 124
 125  $F=-kx$ (intercepts origin)
 126
 127  $\text{elastic potential energy} = {1 \over 2}kx^2$
 128
 129  $x={2mg \over k}$
 130
 131  Vertical: $\Delta E = {1 \over 2}kx^2 + mgh
 132
 133% -----------------------
 134  \subsection*{Motion equations}
 135
 136    \begin{tabular}{ l r }
 137      & no \\
 138      $v=u+at$ & $x$ \\
 139      $x = {1 \over 2}(v+u)t$ & $a$ \\
 140      $x=ut+{1 \over 2}at^2$ & $v$ \\
 141      $x=vt-{1 \over 2}at^2$ & $u$ \\
 142      $v^2=u^2+2ax$ & $t$ \\
 143    \end{tabular}
 144
 145% -----------------------
 146  \subsection*{Momentum}
 147
 148    $\rho = mv$
 149
 150    $\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
 151
 152    $\Sigma (mv_0)=(\Sigma m)v_1$ (conservation)
 153
 154    % $\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
 155
 156    % $\Sigma E_K = \Sigma ({1 \over 2} m v^2) = {1 \over 2} (\Sigma m)v_f$
 157
 158    if elastic:
 159    $$\sum _{i{\mathop {=}}1}^{n}E_K (i)=\sum _{i{\mathop {=}}1}^{n}({1 \over 2}m_i v_{i0}^2)={1 \over 2}\sum _{i{\mathop {=}}1}^{n}(m_i) v_f^2$$
 160
 161    % $n$-body collisions: $\rho$ of each body is independent
 162
 163% ++++++++++++++++++++++
 164\section{Relativity}
 165
 166  \subsection*{Postulates}
 167    1. Laws of physics are constant in all intertial reference frames
 168
 169    2. Speed of light $c$ is the same to all observers (Michelson-Morley)
 170
 171    $\therefore \, t$ must dilate as speed changes
 172
 173    {\bf high-altitude particles:} $t$ dilation means more particles reach Earth than expected (half-life greater when obs. from Earth)
 174
 175    {\bf Inertial reference frame} $a=0$
 176
 177    {\bf Proper time $t_0$ $\vert$ length $l_0$} measured by observer in same frame as events
 178
 179% -----------------------
 180  \subsection*{Lorentz factor}
 181
 182    $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}, \quad v = c\sqrt{1-{1 \over \gamma^2}}$$
 183
 184    $t=t_0 \gamma$ ($t$ longer in moving frame)
 185
 186    $l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
 187
 188    $m=m_0 \gamma$ (mass dilation)
 189
 190% -----------------------
 191  \subsection*{Energy and work}
 192
 193  Total energy = mass energy
 194
 195    $E_{\text{rest}} = mc^2, \quad E_K = (\gamma-1)mc^2$
 196
 197    $E_{\text{total}} = \gamma E_{\text{rest}} = E_K + E_{\text{rest}} = \gamma mc^2$
 198
 199    $W = \Delta E = \Delta mc^2=(\gamma-1)m_{\text{rest}} c^2$
 200
 201% -----------------------
 202  \subsection*{Relativistic momentum}
 203
 204    $$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
 205
 206    $\rho \rightarrow \infty$ as $v \rightarrow c$
 207
 208    $v=c$ is impossible (requires $E=\infty$)
 209
 210    $$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
 211
 212% -----------------------
 213
 214% +++++++++++++++++++++++
 215\section{Fields and power}
 216
 217  \subsection*{Non-contact forces}
 218    \begin{itemize}
 219      {\item electric (dipoles \& monopoles)}
 220      {\item magnetic (dipoles only)}
 221      {\item gravitational (monopoles only, $F_g=0$ at mid, attractive only)}
 222    \end{itemize}
 223
 224    \vspace{1em}
 225
 226    \begin{itemize}
 227      \item monopoles: lines towards centre
 228      \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (two magnets) or $\rightarrow$ N (single)
 229      \item closer field lines means larger force
 230      \item dot: out of page, cross: into page
 231      \item +ve corresponds to N pole
 232      \item Inv. sq. ${E_1 \over E_2} = ({r_2 \over r_1})^2$
 233    \end{itemize}
 234
 235    \includegraphics[height=2cm]{graphics/field-lines.png}
 236    % \includegraphics[height=2cm]{graphics/bar-magnet-fields-rotated.png}
 237
 238% -----------------------
 239  \subsection*{Gravity}
 240
 241    \[F_g=G{{m_1m_2}\over r^2}\tag{grav. force}\]
 242    \[g={F_g \over m_2}=G{m_{1} \over r^2}\tag{field of $m_1$}\]
 243    \[E_g = mg \Delta h\tag{gpe}\]
 244    \[W = \Delta E_g = Fx\tag{work}\]
 245    \[w=m(g-a) \tag{app. weight}\]
 246
 247    % \columnbreak
 248
 249% -----------------------
 250  \subsection*{Satellites}
 251
 252    \[v=\sqrt{GM \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
 253
 254    \[T={\sqrt{4 \pi^2 r^3 \over {GM}}}=2 \pi \sqrt{r_{\text{alt}} \over g_{\text{alt}}}\tag{period}\]
 255
 256    \[r = \sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
 257
 258% -----------------------
 259  \subsection*{Magnetic fields}
 260    % \begin{itemize}
 261    %   \item field strength $B$ measured in tesla
 262    %   \item magnetic flux $\Phi$ measured in weber
 263    %   \item charge $q$ measured in coulombs
 264    %   \item emf $\mathcal{E}$ measured in volts
 265    % \end{itemize}
 266
 267    % \[{E_1 \over E_2}={r_1 \over r_2}^2\]
 268
 269    \[F=qvB\tag{$F$ on moving $q$}\]
 270    \[F=IlB\tag{$F$ of $B$ on $I$}\]
 271    \[B={mv \over qr}\tag{field strength on e-}\]
 272    \[r={mv \over qB} \tag{radius of $q$ in $B$}\]
 273
 274    if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
 275
 276% -----------------------
 277  \subsection*{Electric fields}
 278
 279    \[F=qE(=ma) \tag{strength} \]
 280    \[F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \]
 281    \[E=k{q \over r^2} \tag{field on point charge} \]
 282    \[E={V \over d} \tag{field between plates}\]
 283    \[F=BInl \tag{force on a coil} \]
 284    \[\Phi = B_{\perp}A\tag{magnetic flux} \]
 285    \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} = Blv\tag{induced emf} \]
 286    \[{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \]
 287
 288    \textbf{Lenz's law:}  $I_{\operatorname{emf}}$ opposes $\Delta \Phi$ \\
 289    (emf creates $I$ with associated field that opposes $\Delta \Phi$)
 290
 291    \textbf{Eddy currents:} counter movement within a field
 292
 293    \textbf{Right hand grip:} thumb points to $I$ (single wire) or N (solenoid / coil)
 294
 295    \textbf{Magnet through ring:} consider $g$
 296
 297    \includegraphics[height=2cm]{graphics/slap-2.jpeg}
 298    \includegraphics[height=3cm]{graphics/grip.png}
 299
 300    % \textbf{Right hand slap:} $B \perp I \perp F$ \\
 301    % ($I$ = thumb)
 302
 303    \includegraphics[width=\columnwidth]{graphics/lenz.png}
 304
 305    \textbf{Flux-time graphs:} $m \times n = \operatorname{emf}.$
 306    If $f$ increases, ampl. \& $f$ of $\mathcal{E}$ increase
 307
 308    \textbf{Xfmr} core strengthens \& focuses $\Phi$
 309
 310    \columnbreak
 311
 312% -----------------------
 313  \subsection*{Particle acceleration}
 314
 315    $1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
 316
 317    e- accelerated with $x$ V is given $x$ eV
 318
 319    \[W={1\over2}mv^2=qV \tag{field or points}\]
 320    \[V_{\text{point}} = (V_1 - V_2) \div 2 \tag{if midpoint} \]
 321    \[v=\sqrt{{2qV} \over {m}}\tag{velocity of particle}\]
 322
 323    Circular path: $F\perp B \perp v$
 324
 325% -----------------------
 326  \subsection*{Power transmission}
 327
 328    % \begin{align*}
 329      \[V_{\operatorname{rms}}={V_{\operatorname{p}}\over \sqrt{2}}={V_{\operatorname{p\rightarrow p}}\over {2 \sqrt{2}}} \]
 330      \[P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \]
 331      \[V_{\operatorname{loss}}=IR \]
 332    % \end{align*}
 333
 334    Use high-$V$ side for correct $|V_{drop}|$
 335
 336    \begin{itemize}
 337      {\item Parallel $V$ is constant}
 338      {\item Series $V$ shared within branch}
 339    \end{itemize}
 340
 341% -----------------------
 342  \subsection*{Motors}
 343% \begin{wrapfigure}{r}{-0.1\textwidth}
 344
 345    \includegraphics[height=4cm]{graphics/dc-motor-2.png}
 346    % \includegraphics[height=3cm]{graphics/ac-motor.png} \\
 347    \includegraphics[height=4cm]{graphics/ac-generator.png} \\
 348
 349    Force on I-carying wire, not Cu \\
 350    $F=0$ for front & back of coil (parallel) \\
 351    Any angle $> 0$ will produce force \\
 352% \end{wrapfigure}
 353    \textbf{DC:} split ring (two halves)
 354
 355% \begin{wrapfigure}{r}{0.3\textwidth}
 356
 357% \end{wrapfigure}
 358    \textbf{AC:} slip ring (separate rings with constant contact)
 359
 360% \pagebreak
 361
 362% +++++++++++++++++++++++
 363\section{Waves}
 364
 365  \textbf{nodes:} fixed on graph \\
 366  \textbf{amplitude:} max disp. from $y=0$ \\
 367  \textbf{rarefactions} and \textbf{compressions} \\
 368  \textbf{mechanical:} transfer of energy without net transfer of matter \\
 369
 370
 371  \textbf{Longitudinal (motion $||$ wave)}
 372  \includegraphics[width=6cm]{graphics/longitudinal-waves.png}
 373
 374  \textbf{Transverse (motion $\perp$ wave)}
 375  \includegraphics[width=6cm]{graphics/transverse-waves.png}
 376
 377  % -----------------------
 378  $T={1 \over f}\quad$(period: time for one cycle)
 379  $v=f \lambda \quad$(speed: displacement / sec)
 380  $f={c \over \lambda}\quad\hspace{0.7em}$(for $v=c$)
 381
 382  % -----------------------
 383  \subsection*{Doppler effect}
 384
 385  When $P_1$ approaches $P_2$, each wave $w_n$ has slightly less distance to travel than $w_{n-1}$. $w_n$ reaches observer sooner than $w_{n-1}$ ("apparent" $\lambda$).
 386
 387  % -----------------------
 388  \subsection*{Interference}
 389
 390  \includegraphics[width=4.5cm]{graphics/poissons-spot.png} \\
 391  Poissons's spot supports wave theory (circular diffraction)
 392
 393  \textbf{Standing waves} - constructive int. at resonant freq. Rebound from ends.
 394
 395  \textbf{Coherent } - identical frequency, phase, direction (ie strong & directional). e.g. laser
 396
 397  \textbf{Incoherent} - e.g. incandescent/LED
 398
 399
 400
 401
 402
 403  % -----------------------
 404  \subsection*{Harmonics}
 405
 406  1st harmonic = fundamental
 407
 408  \textbf{for nodes at both ends:} \\
 409  \(\hspace{2em} \lambda = {{2l} \div n}\)
 410  \(\hspace{2em} f = {nv \div 2l} \)
 411
 412  \textbf{for node at one end ($n$ is odd):} \\
 413  \(\hspace{2em} \lambda = {{4l} \div n}\)
 414  \(\hspace{2em} f = {nv \div 4l} \) \\
 415  alternatively, $\lambda = {4l \over {2n-1}}$ where $n\in \mathbb{Z}$ and $n+1$ is the next possible harmonic
 416
 417
 418  % \(a=2\) for nodes at both ends, \\ \(a=4\) for node at one end
 419
 420  % -----------------------
 421  \subsection*{Polarisation}
 422  \includegraphics[height=3.5cm]{graphics/polarisation.png} \\
 423  Transverse only. Reduces total $A$.
 424
 425  % -----------------------
 426  \subsection*{Diffraction}
 427  \includegraphics[width=6cm]{graphics/diffraction.jpg}
 428  \includegraphics[width=6cm]{graphics/diffraction-2.png}
 429  \begin{itemize}
 430    % \item \(pd = |S_1P-S_2P|\) for \(p\) on screen
 431    \item Constructive: \(pd = n\lambda, n \in \mathbb{Z}\)
 432    \item Destructive: \(pd = (n-{1 \over 2})\lambda, n \in \mathbb{Z}\)
 433    \item Path difference: \(\Delta x = {{\lambda l }\over d}\) where \\
 434    % \(\Delta x\) = fringe spacing \\
 435    \(l\) = distance from source to observer\\
 436    \(d\) = separation between each wave source (e.g. slit) \(=S_1-S_2\)
 437    \item diffraction $\propto {\lambda \over d} \propto$ fringe spacing
 438    \item $d(|\overrightarrow{S_1W}|-|\overrightarrow{S_2W}|)=d \Delta x = \lambda l$
 439    \item significant diffraction when ${\lambda \over \Delta x} \ge 1$
 440    \item diffraction creates distortion (electron $\gt$ optical microscopes)
 441  \end{itemize}
 442
 443
 444  % -----------------------
 445  \subsection*{Refraction}
 446  \includegraphics[height=3.5cm]{graphics/refraction.png}
 447
 448  When a medium changes character, light is \emph{reflected}, \emph{absorbed}, and \emph{transmitted}. $\lambda$ changes, not $f$. $n$ changes slightly with $f$ (dispersion)
 449
 450  angle of incidence $\theta_i =$ angle of reflection $\theta_r$
 451
 452  Critical angle $\theta_c = \sin^{-1}{n_2 \over n_1}$
 453
 454  Snell's law $n_1 \sin \theta_1=n_2 \sin \theta_2$
 455
 456  ${v_1 \div v_2} = {\sin\theta_1 \div \sin\theta_2}$
 457
 458  $n_1 v_1 = n_2 v_2$
 459
 460  $n={c \over v}$
 461
 462
 463% +++++++++++++++++++++++
 464\section{Light and Matter}
 465
 466  % -----------------------
 467  \subsection*{Planck's equation}
 468
 469  \[ \quad E=hf={hc \over \lambda}=\rho c = qV\]
 470  \[ h=6.63 \times 10^{-34}\operatorname{J s}=4.14 \times 10^{-15} \operatorname{eV s} \]
 471  \[ 1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J} \]
 472
 473  \subsection*{De Broglie's theory}
 474
 475  \[ \lambda = {h \over \rho} = {h \over mv} = {h \over {m \sqrt{2W \over m}}}\]
 476  \[ \rho = {hf \over c} = {h \over \lambda} = mv, \quad E = \rho c \]
 477  \[ v = \sqrt{2E_K \div m} \]
 478
 479  \begin{itemize}
 480    \item cannot confirm with double-slit (slit $< r_{\operatorname{proton}}$)
 481    \item confirmed by e- and x-ray patterns
 482  \end{itemize}
 483
 484  \subsection*{Force of electrons}
 485  \[ F={2P_{\text{in}}\over c} \]
 486  % \begin{align*}
 487  \[ \text{photons / sec} = {\text{total energy} \over \text{energy / photon}} \]
 488  \[ ={{P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf} \]
 489  % ={P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf}
 490  % \end{align*}
 491
 492  \subsection*{X-ray electron interaction}
 493
 494  \begin{itemize}
 495    \item e- stable if $mvr = n{h \over 2\pi}$ where $n \in \mathbb{Z}$ and $r$ is radius of orbit
 496    \item $\therefore 2\pi r = n{h \over mv} = n \lambda$ (circumference)
 497    \item if $2\pi r \ne n{h \over mv}$, no standing wave
 498    \item if e- = x-ray diff patterns, $E_{\text{e-}}={\rho^2 \over 2m}={({h \over \lambda})^2 \div 2m}$
 499    % \item calculating $h$: $\lambda = {h \over \rho}$
 500  \end{itemize}
 501
 502  \subsection*{Photoelectric effect}
 503
 504  \begin{itemize}
 505    \item $V_{\operatorname{supply}}$ does not affect photocurrent
 506    \item $V_{\operatorname{sup}} > 0$: attracted to +ve
 507    \item $V_{\operatorname{sup}} < 0$: attracted to -ve, $I\rightarrow 0$
 508    \item $v$ of e- depends on shell
 509    \item max $I$ (not $V$) depends on intensity
 510  \end{itemize}
 511
 512  \subsubsection*{Threshold frequency $f_0$}
 513
 514  min $f$ for photoelectron release. if $f < f_0$, no photoelectrons.
 515
 516  \subsubsection*{Work function $\phi=hf_0$}
 517
 518  min $E$ for photoelectron release. determined by strength of bonding. Units: eV or J.
 519
 520  \subsubsection*{Kinetic energy E_K=hf - \phi = qV_0}
 521
 522
 523  $V_0 = E_K$ in eV \\
 524  % $E_K = x$-int of $V\cdot I$ graph (in eV) \\
 525  dashed line below $E_K=0$
 526
 527
 528  \subsubsection*{Stopping potential $V_0$ for min $I$}
 529
 530  $$V_0=h_{\text{eV}}(f-f_0)$$
 531  Opposes induced photocurrent
 532
 533  \subsubsection*{Graph features}
 534
 535  \newcolumntype{b}{>{\hsize=.75\hsize}X}
 536\newcolumntype{s}{>{\hsize=.3\hsize}X}
 537
 538  \begin{tabularx}{\columnwidth}{bbbb}
 539\hline
 540&$m$&$x$-int&$y$-int \\
 541\hline
 542\hline
 543$f \cdot E_K$ & $h$ & $f_0$ & $-\phi$ \\
 544$V \cdot I$ &  & $V_0$ & intensity\\
 545$f \cdot V$ & ${h \over q}$ & $f_0$ & $-\phi \over q$ &
 546\hline
 547\end{tabularx}
 548
 549
 550
 551  \subsection*{Spectral analysis}
 552
 553  \begin{itemize}
 554    \item $\Delta E = hf = {hc \over \lambda}$ between ground / excited state
 555    \item $E$ and $f$ of photon: $E_2 - E_1 = hf = {hc \over \lambda}$
 556    \item Ionisation energy - min $E$ required to remove e-
 557    \item EMR is absorbed/emitted when $E_{\operatorname{K-in}}=\Delta E_{\operatorname{shells}}$ (i.e. $\lambda = {hc \over \Delta E_{\operatorname{shells}}}$)
 558    \item No. of lines - include all possible states. \Delta E \ne |\Delta E|
 559  \end{itemize}
 560
 561  \subsection*{Uncertainty principle}
 562
 563  $\Delta x \approx {\text{slit width} \over 2$}
 564
 565  measurement: $\rho$ transferred to e-\\ slit: possibility of diff. before slit
 566
 567  \subsection*{Wave-particle duality}
 568
 569  \subsubsection*{wave model}
 570  \begin{itemize}
 571    % \item cannot explain photoelectric effect
 572    \item any $f$ works, given $t$
 573    \item predicts delay between incidence and ejection
 574    \item speed depends on medium
 575    \item supported by bright spot in centre
 576    \item $\lambda = {hc \over E}$
 577  \end{itemize}
 578
 579  \subsubsection*{particle model}
 580
 581  \begin{itemize}
 582    % \item explains photoelectric effect
 583    \item rate of photoelectron release $\propto$ intensity
 584    \item no time delay - one photon releases one electron
 585    \item threshold frequency
 586    \item double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
 587    \item light exerts force
 588    \item light bent by gravity
 589    \item quantised energy
 590    \item $\lambda = {h \over \rho}$
 591  \end{itemize}
 592
 593  % +++++++++++++++++++++++
 594  \section{Experimental \\ design}
 595
 596  \textbf{Absolute uncertainty} $\Delta$ \\
 597  (same units as quantity)
 598  \[ \Delta(m) = {{\mathcal{E}(m)} \over 100} \cdot m \]
 599  \[ (A \pm \Delta A) + (B \pm \Delta A) = (A+B) \pm (\Delta A + \Delta B) \]
 600  \[ (A \pm \Delta A) - (B \pm \Delta A) = (A-B) \pm (\Delta A + \Delta B) \]
 601  \[ c(A \pm \Delta A) = cA \pm c \Delta A \]
 602
 603  \textbf{Relative uncertainty} $\mathcal{E}$ (unitless)
 604  \[ \mathcal{E}(m) = {{\Delta(m)} \over m} \cdot 100 \]
 605  \[ (A \pm \mathcal{E} A) \cdot (B \pm \mathcal{E} B) = (A \cdot B) \pm (\mathcal{E} A + \mathcal{E} B) \]
 606  \[ (A \pm \mathcal{E} A) \div (B \pm \mathcal{E} B) = (A \div B) \pm (\mathcal{E} A + \mathcal{E} B) \]
 607  \[ (A \pm \mathcal{E} A)^n = (A^n \pm n \mathcal{E} A) \]
 608  \[ c(A \pm \mathcal{E} A)=cA \pm \mathcal{E} A \]
 609
 610  Uncertainty of a measurement is $1 \over 2$ the smallest division
 611
 612  \textbf{Precision} - concordance of values \\
 613  \textbf{Accuracy} - closeness to actual value\\
 614  \textbf{Random errors} - unpredictable, reduced by more tests \\
 615  \textbf{Systematic errors} - not reduced by more tests \\
 616  \textbf{Uncertainty} - margin of potential error \\
 617  \textbf{Error} - actual difference \\
 618  \textbf{Hypothesis} - can be tested experimentally \\
 619  \textbf{Model} - evidence-based but indirect representation
 620
 621\end{multicols}
 622
 623\begin{center}
 624  \includegraphics[height=2.95cm]{graphics/spectrum.png}
 625\end{center}
 626
 627\end{document}