1---
2geometry: a4paper, margin=2cm
3columns: 2
4author: Andrew Lorimer
5header-includes:
6- \usepackage{setspace}
7- \usepackage{fancyhdr}
8- \usepackage{graphicx}
9- \pagestyle{fancy}
10- \fancyhead[LO,LE]{Year 12 Methods}
11- \fancyhead[CO,CE]{Andrew Lorimer}
12---
13
14\setstretch{1.2}
15\pagenumbering{gobble}
16
17# Circular functions
18
19## Exact values
20
21\includegraphics[width=0.2\textwidth]{./graphics/exact-values-1.png}
22\includegraphics[width=0.2\textwidth]{./graphics/exact-values-2.png}
23
24$$1 \thinspace \operatorname{rad}={{180 \operatorname{deg}}\over \pi}$$
25
26## $\sin$ and $\cos$ graphs
27
28$$f(x)=a \sin(bx-c)+d$$
29$$f(x)=a \cos(bx-c)+d$$
30
31where
32
33- $a$ is the $y$-dilation (amplitude)
34- $b$ is the $x$-dilation (period)
35- $c$ is the $x$-shift (phase)
36- $d$ is the $y$-shift (equilibrium position)
37
38
39Domain is $\mathbb{R}$
40
41Range is $[-b+c, b+c]$;
42
43Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$.
44
45**Mean / equilibrium:** line that the graph oscillates around ($y=d$)
46
47### Amplitude
48
49Graph oscillates between $+a$ and $-a$ in $y$-axis
50
51$a=0$ produces straight line
52
53$a < 0$ inverts the phase ($\sin$ becomes $\cos$, vice vera)
54
55### Period
56
57Period $T$ is ${2 \pi}\over b$
58
59$b=0$ produces straight line
60
61$b<0$ inverts the phase
62
63### Phase
64
65$c$ moves the graph left-right in the $x$ axis.
66
67If $c=T={{2\pi}\over b}$, the graph has no actual phase shift.
68
69## Symmetry
70
71$$\sin(\theta+{\pi\over 2})=\sin\theta$$
72$$\sin(\theta+\pi)=-\sin\theta$$
73
74$$\cos(\theta+{\pi \over 2})=-\cos\theta$$
75$$\cos(\theta+\pi)=-cos(\theta+{3\pi \over 2})=\cos(-\theta)$$
76
77## Pythagorean identity
78
79$$\cos^2\theta+\sin^2\theta=1$$
80
81## Complementary relationships
82
83$$\sin({\pi \over 2} - \theta)=\cos\theta$$
84$$\cos({\pi \over 2} - \theta)=\sin\theta$$
85
86$$\sin\theta=-\cos(\theta+{\pi \over 2})$$
87$$\cos\theta=\sin(\theta+{\pi \over 2})$$
88
89## $\tan$ graph
90
91$$y=a\tan(nx)$$
92
93where
94
95- $a$ is $x$-dilation (period)
96- $n$ is $y$-dilation ($\equiv$ amplitude)
97- period $T$ is $\pi \over n$
98- range is $R$
99- roots at $x={k\pi \over n}$
100- asymptotes at $x={{(2k+1)\pi}\over 2n},\quad k \in \mathbb{Z}$
101
102**Asymptotes should always have equations and arrow pointing up**
103
104## Solving trig equations
105
1061. Solve domain for $n\theta$
1072. Find solutions for $n\theta$
1083. Divide solutions by $n$
109
110$\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\theta \in [0,4\pi])$
111
112$2\theta=\sin^{-1}{\sqrt{3} \over 2}$
113
114$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$
115
116$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$