1\documentclass[a4paper]{article}
2\usepackage{multicol}
3\usepackage[cm]{fullpage}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\setlength{\parindent}{0cm}
7\usepackage[nodisplayskipstretch]{setspace}
8\setstretch{1.3}
9\usepackage{graphicx}
10\usepackage{wrapfig}
11\usepackage{enumitem}
12\setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt,leftmargin=5pt}
13
14
15\begin{document}
16
17\pagenumbering{gobble}
18\begin{multicols}{3}
19
20% +++++++++++++++++++++++
21
22{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
23
24% +++++++++++++++++++++++
25\section{Motion}
26
27 $\operatorname{m/s} \times 3.6 = \operatorname{km/h}$
28
29 \subsection*{Inclined planes}
30 $F = m g \sin\theta - F_{frict} = m a$
31
32% -----------------------
33 \subsection*{Banked tracks}
34
35 \includegraphics[height=4cm]{/mnt/andrew/graphics/banked-track.png}
36
37 $$\theta = \tan^{-1} {{v^2} \over rg}$$
38
39 $\Sigma F$ always acts towards centre, but not necessarily horizontally
40
41 $\Sigma F = F_{\operatorname{norm}} + F_{\operatorname{g}}={{mv^2} \over r} = mg \tan \theta$
42
43 Design speed $v = \sqrt{gr\tan\theta}$
44
45% -----------------------
46 \subsection*{Work and energy}
47
48 $W=Fx=\Delta \Sigma E$ (work)
49
50 $E_K = {1 \over 2}mv^2$ (kinetic)
51
52 $E_G = mgh$ (potential)
53
54 $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
55
56% -----------------------
57 \subsection*{Horizontal circular motion}
58
59 $v = {{2 \pi r} \over T}$
60
61 $f = {1 \over T}, \quad T = {1 \over f}$
62
63 $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
64
65 $\Sigma F, a$ towards centre, $v$ tangential
66
67 $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
68
69 \includegraphics[height=4cm]{/mnt/andrew/graphics/circ-forces.png}
70
71% -----------------------
72 \subsection*{Vertical circular motion}
73
74 $T =$ tension, e.g. circular pendulum
75
76 $T+mg = {{mv^2}\over r}$ at highest point
77
78 $T-mg = {{mv^2} \over r}$ at lowest point
79
80% -----------------------
81 \subsection*{Projectile motion}
82 \begin{itemize}
83 \item{horizontal component of velocity is constant if no air resistance}
84 \item{vertical component affected by gravity: $a_y = -g$}
85 \end{itemize}
86
87 \begin{align*}
88 v=\sqrt{v^2_x + v^2_y} \tag{vectors} \\
89 h={{u^2\sin \theta ^2}\over 2g} \tag{max height}\\
90 x=ut\cos\theta \tag{$\Delta x$ at $t$} \\
91 y=ut \sin \theta-{1 \over 2}gt^2 \tag{height at $t$} \\
92 t={{2u\sin\theta}\over g} \tag{time of flight}\\
93 d={v^2 \over g}\sin \theta \tag{horiz. range} \\
94 \end{align*}
95
96 \includegraphics[height=3.2cm]{/mnt/andrew/graphics/projectile-motion.png}
97
98% -----------------------
99 \subsection*{Pulley-mass system}
100
101 $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
102
103 $\Sigma F = m_2g-m_1g=\Sigma ma$ (solve)
104
105% -----------------------
106 \subsection*{Graphs}
107 \begin{itemize}
108 \item{Force-time: $A=\Delta \rho$}
109 \item{Force-disp: $A=W$}
110 \item{Force-ext: $m=k,\quad A=E_{spr}$}
111 \item{Force-dist: $A=\Delta \operatorname{gpe}$}
112 \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
113 \end{itemize}
114
115% -----------------------
116 \subsection*{Hooke's law}
117
118 $F=-kx$
119
120 $E_{elastic} = {1 \over 2}kx^2$
121
122% -----------------------
123 \subsection*{Motion equations}
124
125 \begin{tabular}{ l r }
126 $v=u+at$ & $x$ \\
127 $x = {1 \over 2}(v+u)t$ & $a$ \\
128 $x=ut+{1 \over 2}at^2$ & $v$ \\
129 $x=vt-{1 \over 2}at^2$ & $u$ \\
130 $v^2=u^2+2ax$ & $t$ \\
131 \end{tabular}
132
133% -----------------------
134 \subsection*{Momentum}
135
136 $\rho = mv$
137
138 $\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
139
140 $\Sigma mv_0=\Sigma mv_1$ (conservation)
141
142 $\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
143
144 $n$-body collisions: $\rho$ of each body is independent
145
146% ++++++++++++++++++++++
147\section{Relativity}
148
149 \subsection*{Postulates}
150 1. Laws of physics are constant in all intertial reference frames
151
152 2. Speed of light $c$ is the same to all observers (Michelson-Morley)
153
154 $\therefore , t$ must dilate as speed changes
155
156 {\bf Inertial reference frame} - $a=0$
157
158 {\bf Proper time $t_0$ $\vert$ length $l_0$} - measured by observer in same frame as events
159
160% -----------------------
161 \subsection*{Lorentz factor}
162
163 $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
164
165 $t=t_0 \gamma$ ($t$ longer in moving frame)
166
167 $l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
168
169 $m=m_0 \gamma$ (mass dilation)
170
171 $$v = c\sqrt{1-{1 \over \gamma^2}}$$
172
173% -----------------------
174 \subsection*{Energy and work}
175
176 $E_0 = mc^2$ (rest)
177
178 $E_{total} = E_K + E_{rest} = \gamma mc^2$
179
180 $E_K = (\gamma - 1)mc^2$
181
182 $W = \Delta E = \Delta mc^2$
183
184% -----------------------
185 \subsection*{Relativistic momentum}
186
187 $$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
188
189 $\rho \rightarrow \infty$ as $v \rightarrow c$
190
191 $v=c$ is impossible (requires $E=\infty$)
192
193 $$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
194
195% -----------------------
196 \subsection*{High-altitude muons}
197 \begin{itemize}
198 {\item $t$ dilation - more muons reach Earth than expected}
199 {\item normal half-life $2.2 \operatorname{\mu s}$ in stationary frame, $> 2.2 \operatorname{\mu s}$ observed from Earth}
200 \end{itemize}
201
202% +++++++++++++++++++++++
203\section{Fields and power}
204
205 \subsection*{Non-contact forces}
206 \begin{itemize}
207 {\item electric fields (dipoles \& monopoles)}
208 {\item magnetic fields (dipoles only)}
209 {\item gravitational fields (monopoles only)}
210 \end{itemize}
211
212 \vspace{1em}
213
214 \begin{itemize}
215 \item monopoles: lines towards centre
216 \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (or perpendicular to wire)
217 \item closer field lines means larger force
218 \item dot: out of page, cross: into page
219 \item +ve corresponds to N pole
220 \end{itemize}
221
222 \includegraphics[height=2cm]{/mnt/andrew/graphics/field-lines.png}
223
224% -----------------------
225 \subsection*{Gravity}
226
227 \[F_g=G{{m_1m_2}\over r^2}\tag{grav. force}\]
228 \[g={F_g \over m_2}=G{m_{1} \over r^2}\tag{field of $m_1$}\]
229 \[E_g = mg \Delta h\tag{gpe}\]
230 \[W = \Delta E_g = Fx\tag{work}\]
231 \[w=m(g-a) \tag{app. weight}\]
232
233 % \columnbreak
234
235% -----------------------
236 \subsection*{Satellites}
237
238 \[v=\sqrt{Gm_{\operatorname{planet}} \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
239
240 \[T={\sqrt{4 \pi^2 r^2} \over {GM}}\tag{period}\]
241
242 \[\sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
243
244% -----------------------
245 \subsection*{Magnetic fields}
246 \begin{itemize}
247 \item field strength $B$ measured in tesla
248 \item magnetic flux $\Phi$ measured in weber
249 \item charge $q$ measured in coulombs
250 \item emf $\mathcal{E}$ measured in volts
251 \end{itemize}
252
253 % \[{E_1 \over E_2}={r_1 \over r_2}^2\]
254
255 \[F=qvB\tag{$F$ on moving $q$}\]
256 \[F=IlB\tag{$F$ of $B$ on $I$}\]
257 \[r={mv \over qB} \tag{radius of $q$ in $B$}\]
258
259 if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
260
261% -----------------------
262 \subsection*{Electric fields}
263
264 \[F=qE \tag{$E$ = strength} \]
265 \[F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \]
266 \[E=k{q \over r^2} \tag{field on point charge} \]
267 \[E={V \over d} \tag{field between plates}\]
268 \[F=BInl \tag{force on a coil} \]
269 \[\Phi = B_{\perp}A\tag{magnetic flux} \]
270 \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \]
271 \[{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \]
272
273 \textbf{Lenz's law:} $I_{\operatorname{emf}}$ opposes $\Delta \Phi$
274
275 \textbf{Eddy currents:} counter movement within a field
276
277 \textbf{Right hand grip:} thumb points to $I$ (single wire) or N (solenoid / coil)
278
279 \textbf{Right hand slap:} $B \perp I \perp F$
280
281 \textbf{Flux-time graphs:} $m \times n = \operatorname{emf}$
282
283 \textbf{Transformers:} core strengthens \& focuses $\Phi$
284
285% -----------------------
286 \subsection*{Particle acceleration}
287
288 $1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
289
290 e- accelerated with $x$ V is given $x$ eV
291
292 \[W={1\over2}mv^2=qV \tag{field or points}\]
293 \[v=\sqrt{{2qV} \over {m}}\tag{velocity of particle}\]
294
295
296% -----------------------
297 \subsection*{Power transmission}
298
299 % \begin{align*}
300 $$V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}}$$
301 P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \\
302 V_{\operatorname{loss}}=IR
303 % \end{align*}
304
305 Use high-$V$ side for correct $|V_{drop}|$
306
307 \begin{itemize}
308 {\item Parallel - $V$ is constant}
309 {\item Series - $V$ shared within branch}
310 \end{itemize}
311
312 \includegraphics[height=4cm]{/mnt/andrew/graphics/ac-generator.png}
313
314% -----------------------
315 \subsection*{Motors}
316% \begin{wrapfigure}{r}{-0.1\textwidth}
317
318 \includegraphics[height=4cm]{/mnt/andrew/graphics/dc-motor-2.png}
319 \includegraphics[height=3cm]{/mnt/andrew/graphics/ac-motor.png} \\
320% \end{wrapfigure}
321 \textbf{DC:} split ring (two halves)
322
323% \begin{wrapfigure}{r}{0.3\textwidth}
324
325% \end{wrapfigure}
326 \textbf{AC:} slip ring (separate rings with constant contact)
327
328
329\end{multicols}
330\end{document}