spec / statistics.texon commit [spec] p-values table and one/two-tail tests (491a904)
   1\documentclass[spec-collated.tex]{subfiles}
   2\begin{document}
   3
   4  \section{Statistics}
   5
   6  \subsection*{Continuous random variables}
   7
   8  A continuous random variable \(X\) has a pdf \(f\) such that:
   9
  10  \begin{enumerate}
  11    \item \(f(x) \ge 0 \forall x \)
  12    \item \(\int^\infty_{-\infty} f(x) \> dx = 1\)
  13  \end{enumerate}
  14
  15  \begin{align*}
  16    E(X) &= \int_\textbf{X} (x \cdot f(x)) \> dx \\
  17    \operatorname{Var}(X) &= E\left[(X-\mu)^2\right]
  18  \end{align*}
  19
  20  \[ \Pr(X \le c) = \int^c_{-\infty} f(x) \> dx \]
  21  
  22
  23  \subsection*{Two random variables \(X, Y\)}
  24
  25  If \(X\) and \(Y\) are independent:
  26  \begin{align*}
  27    \operatorname{E}(aX+bY) & = a\operatorname{E}(X)+b\operatorname{E}(Y) \\
  28    \operatorname{Var}(aX \pm bY \pm c) &= a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y)
  29  \end{align*}
  30
  31  \subsection*{Linear functions \(X \rightarrow aX+b\)}
  32
  33  \begin{align*}
  34    \Pr(Y \le y) &= \Pr(aX+b \le y) \\
  35    &= \Pr\left(X \le \dfrac{y-b}{a}\right) \\
  36    &= \int^{\frac{y-b}{a}}_{-\infty} f(x) \> dx
  37  \end{align*}
  38
  39  \begin{align*}
  40    \textbf{Mean:} && \operatorname{E}(aX+b) & = a\operatorname{E}(X)+b \\
  41    \textbf{Variance:} && \operatorname{Var}(aX+b) &= a^2 \operatorname{Var}(X) \\
  42  \end{align*}
  43
  44  \subsection*{Expectation theorems}
  45
  46  For some non-linear function \(g\), the expected value \(E(g(X))\) is not equal to \(g(E(X))\).
  47
  48  \begin{align*}
  49    E(X^2) &= \operatorname{Var}(X) - \left[E(X)\right]^2 \\
  50    E(X^n) &= \Sigma x^n \cdot p(x) \tag{non-linear} \\
  51    &\ne [E(X)]^n \\
  52    E(aX \pm b) &= aE(X) \pm b \tag{linear} \\
  53    E(b) &= b \tag{\(\forall b \in \mathbb{R}\)}\\
  54    E(X+Y) &= E(X) + E(Y) \tag{two variables}
  55  \end{align*}
  56
  57  \subsection*{Sample mean}
  58
  59  Approximation of the \textbf{population mean} determined experimentally.
  60
  61  \[ \overline{x} = \dfrac{\Sigma x}{n} \]
  62
  63  where
  64  \begin{description}[nosep, labelindent=0.5cm]
  65    \item \(n\) is the size of the sample (number of sample points)
  66    \item \(x\) is the value of a sample point
  67  \end{description}
  68
  69\begin{cas}
  70  \begin{enumerate}[leftmargin=3mm]
  71    \item Spreadsheet
  72    \item In cell A1:\\ \path{mean(randNorm(sd, mean, sample size))}
  73    \item Edit \(\rightarrow\) Fill \(\rightarrow\) Fill Range
  74    \item Input range as A1:An where \(n\) is the number of samples
  75    \item Graph \(\rightarrow\) Histogram
  76  \end{enumerate}
  77  \end{cas}
  78
  79  \subsubsection*{Sample size of \(n\)}
  80
  81  \[ \overline{X} = \sum_{i=1}^n \frac{x_i}{n} = \dfrac{\sum x}{n} \]
  82
  83  Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)).
  84
  85  For a new distribution with mean of \(n\) trials, \(\operatorname{E}(X^\prime) = \operatorname{E}(X), \quad \operatorname{sd}(X^\prime) = \dfrac{\operatorname{sd}(X)}{\sqrt{n}}\)
  86
  87  \begin{cas}
  88  
  89    \begin{itemize}
  90      \item Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); where \verb;n; is the number of samples. Show histogram with Histogram key in top left
  91      \item To calculate parameters of a dataset: Calc \(\rightarrow\) One-variable
  92    \end{itemize}
  93
  94  \end{cas}
  95  
  96  \subsection*{Normal distributions}
  97
  98
  99  \[ Z = \frac{X - \mu}{\sigma} \]
 100
 101  Normal distributions must have area (total prob.) of 1 \(\implies \int^\infty_{-\infty} f(x) \> dx = 1\) \\
 102  \(\text{mean} = \text{mode} = \text{median}\)
 103
 104  \begin{warning}
 105    Always express \(z\) as +ve. Express confidence \textit{interval} as ordered pair.
 106  \end{warning}
 107
 108\pgfmathdeclarefunction{gauss}{2}{%
 109  \pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))}%
 110}
 111                  \pgfplotsset{every axis/.append style={
 112                    axis x line=middle,    % put the x axis in the middle
 113                    axis y line=middle,    % put the y axis in the middle
 114                  }} \pgfkeys{/pgf/decoration/.cd,
 115      distance/.initial=10pt
 116}  \pgfdeclaredecoration{add dim}{final}{
 117\state{final}{% 
 118\pgfmathsetmacro{\dist}{5pt*\pgfkeysvalueof{/pgf/decoration/distance}/abs(\pgfkeysvalueof{/pgf/decoration/distance})}    
 119          \pgfpathmoveto{\pgfpoint{0pt}{0pt}}             
 120          \pgfpathlineto{\pgfpoint{0pt}{2*\dist}}   
 121          \pgfpathmoveto{\pgfpoint{\pgfdecoratedpathlength}{0pt}} 
 122          \pgfpathlineto{\pgfpoint{(\pgfdecoratedpathlength}{2*\dist}}     
 123          \pgfsetarrowsstart{latex}
 124          \pgfsetarrowsend{latex}
 125          \pgfpathmoveto{\pgfpoint{0pt}{\dist}}
 126          \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{\dist}} 
 127          \pgfusepath{stroke} 
 128          \pgfpathmoveto{\pgfpoint{0pt}{0pt}}
 129          \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{0pt}}
 130}}
 131\tikzset{dim/.style args={#1,#2}{decoration={add dim,distance=#2},
 132                decorate,
 133                postaction={decorate,decoration={text along path,
 134                                                 raise=#2,
 135                                                 text align={align=center},
 136                                                 text={#1}}}}}
 137                  \begin{figure*}[hb]
 138                    \centering
 139                    {\begin{center} \begin{tikzpicture}
 140  \pgfplotsset{set layers, axis x line=middle, axis y line=middle}
 141\begin{axis}[every axis plot post/.append style={
 142  mark=none,domain=-3:3,samples=50,smooth}, 
 143  axis x line=bottom, 
 144  axis y line=left,
 145  enlargelimits=upper,
 146  x=\textwidth/10,
 147  ytick={0.55},
 148  yticklabels={\(\frac{1}{\sigma \sqrt{2\pi}}\)}, 
 149  xtick={-2,-1,0,1,2},
 150  x tick label style = {font=\footnotesize},
 151  xticklabels={\((\mu-2\sigma)\), \((\mu-\sigma)\), \(\mu\), \((\mu+\sigma)\), \((\mu+2\sigma)\)},
 152  xlabel={\(x\)},
 153  every axis x label/.style={at={(current axis.right of origin)},anchor=north west},
 154  every axis y label/.style={at={(axis description cs:-0.02,0.2)}, anchor=south west, rotate=90},
 155  ylabel={\(\Pr(X=x)\)}]
 156  \addplot {gauss(0,0.75)};
 157\fill[red!30] (-3,0)  -- plot[id=f3,domain=-3:3,samples=50]
 158        function {1/(0.75*sqrt(2*pi))*exp(-((x)^2)/(2*0.75^2))} -- (3,0) -- cycle;
 159  \fill[darkgray!30] (3,0)  -- plot[id=f3,domain=-3:3,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (3,0) -- cycle;
 160  \fill[lightgray!30] (-2,0)  -- plot[id=f3,domain=-2:2,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (2,0) -- cycle;
 161  \fill[white!30] (-1,0)  -- plot[id=f3,domain=-1:1,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (1,0) -- cycle;
 162  \begin{scope}[<->]
 163    \draw (-1,0.35) -- (1,0.35) node [midway, fill=white] {68.3\%};
 164    \draw (-2,0.25) -- (2,0.25) node [midway, fill=white] {95.5\%};
 165    \draw (-3,0.15) -- (3,0.15) node [midway, fill=white] {99.7\%};
 166  \end{scope}
 167  \begin{scope}[-, dashed, gray]
 168    \draw (-1,0) -- (-1, 0.35);
 169    \draw (1,0) -- (1, 0.35);
 170    \draw (-2,0) -- (-2, 0.25);
 171    \draw (2,0) -- (2, 0.25);
 172    \draw (-3,0) -- (-3, 0.15);
 173    \draw (3,0) -- (3, 0.15);
 174  \end{scope}
 175\end{axis}
 176\begin{axis}[every axis plot post/.append style={
 177  mark=none,domain=-3:3,samples=50,smooth}, 
 178  axis x line=bottom, 
 179  enlargelimits=upper,
 180  x=\textwidth/10,
 181  xtick={-2,-1,0,1,2},
 182  axis x line shift=30pt,
 183  hide y axis,
 184  x tick label style = {font=\footnotesize},
 185  xlabel={\(Z\)},
 186  every axis x label/.style={at={(axis description cs:1,-0.25)},anchor=south west}]
 187  \addplot {gauss(0,0.75)};
 188\end{axis}
 189\end{tikzpicture}\end{center}}
 190                  \end{figure*}
 191
 192  \subsection*{Central limit theorem}
 193
 194  If \(X\) is randomly distributed with mean \(\mu\) and sd \(\sigma\), then with an adequate sample size \(n\) the distribution of the sample mean \(\overline{X}\) is approximately normal with mean \(E(\overline{X})\) and \(\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}}\).
 195
 196  \subsection*{Confidence intervals}
 197
 198  \begin{itemize}
 199    \item \textbf{Point estimate:} single-valued estimate of the population mean from the value of the sample mean \(\overline{x}\)
 200    \item \textbf{Interval estimate:} confidence interval for population mean \(\mu\)
 201    \item \(C\)\% confidence interval \(\implies\) \(C\)\% of samples will contain population mean \(\mu\)
 202  \end{itemize}
 203
 204  \subsubsection*{95\% confidence interval}
 205
 206  For 95\% c.i. of population mean \(\mu\):
 207
 208  \[ x \in \left(\overline{x} \pm 1.96 \dfrac{\sigma}{\sqrt{n}} \right)\]
 209
 210  where:
 211  \begin{description}[nosep, labelindent=0.5cm]
 212    \item \(\overline{x}\) is the sample mean
 213    \item \(\sigma\) is the population sd
 214    \item \(n\) is the sample size from which \(\overline{x}\) was calculated
 215  \end{description}
 216
 217  \begin{cas}
 218    Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\
 219    Set \textit{Type = One-Sample Z Int} \\ \-\hspace{1em} and select \textit{Variable}
 220  \end{cas}
 221
 222  \subsection*{Margin of error}
 223
 224  For 95\% confidence interval of \(\mu\):
 225  \begin{align*}
 226    M &= 1.96 \times \dfrac{\sigma}{\sqrt{n}} \\
 227    \implies n &= \left( \dfrac{1.96 \sigma}{M} \right)^2
 228  \end{align*}
 229
 230  Always round \(n\) up to a whole number of samples.
 231
 232  \subsection*{General case}
 233
 234  For \(C\)\% c.i. of population mean \(\mu\):
 235
 236  \[ x \in \left( \overline{x} \pm k \dfrac{\sigma}{\sqrt{n}} \right) \]
 237  \hfill where \(k\) is such that \(\Pr(-k < Z < k) = \frac{C}{100}\)
 238
 239  \subsection*{Confidence interval for multiple trials}
 240
 241  For a set of \(n\) confidence intervals (samples), there is \(0.95^n\) chance that all \(n\) intervals contain the population mean \(\mu\).
 242
 243  \section{Hypothesis testing}
 244
 245  \begin{warning}
 246    Note hypotheses are always expressed in terms of population parameters
 247  \end{warning}
 248
 249  \subsection*{Null hypothesis \(H_0\)}
 250
 251  Sample drawn from population has same mean as control population, and any difference can be explained by sample variations.
 252
 253  \subsection*{Alternative hypothesis \(H_1\)}
 254
 255  Amount of variation from control is significant, despite standard sample variations.
 256
 257  \subsection*{\(p\)-value}
 258
 259
 260  \begin{align*}
 261    p &= \Pr(\overline{X} \lessgtr \mu(H_1)) \\
 262    &= 2 \cdot \Pr(\overline{X} <> \mu(H_1) | \mu = 8)
 263  \end{align*}
 264
 265  Probability of observing a value of the sample statistic as significant as the one observed, assuming null hypothesis is true.
 266
 267  \vspace{0.5em}
 268  \begin{tabularx}{23em}{|l|X|}
 269    \hline
 270    \rowcolor{cas}
 271    \(\boldsymbol{p}\) & \textbf{Conclusion} \\
 272    \hline
 273    \(> 0.05\) & insufficient evidence against \(H_0\) \\
 274    \(< 0.05\) (5\%) & good evidence against \(H_0\) \\
 275    \(< 0.01\) (1\%) & strong evidence against \(H_0\) \\
 276    \(< 0.001\) (0.1\%) & very strong evidence against \(H_0\) \\
 277    \hline
 278  \end{tabularx}
 279
 280  \subsection*{Statistical significance}
 281
 282  Significance level is denoted by \(\alpha\).
 283
 284  \-\hspace{1em} If \(p<\alpha\), null hypothesis is \textbf{rejected} \\
 285  \-\hspace{1em} If \(p>\alpha\), null hypothesis is \textbf{accepted}
 286
 287  \subsection*{\(z\)-test}
 288
 289  Hypothesis test for a mean of a sample drawn from a normally distributed population with a known standard deviation.
 290
 291  \begin{cas}
 292  Menu \(\rightarrow\) Statistics \(\rightarrow\) Calc \(\rightarrow\) Test. \\
 293  Select \textit{One-Sample Z-Test} and \textit{Variable}, then input:
 294    \begin{description}[nosep, style=multiline, labelindent=0.5cm, leftmargin=2cm, font=\normalfont]
 295    \item[\(\mu\) cond:] same operator as \(H_1\)
 296    \item[\(\mu_0\):] expected sample mean (null hypothesis)
 297    \item[\(\sigma\):] standard deviation (null hypothesis)
 298    \item[\(\overline{x}\):] sample mean
 299    \item[\(n\):] sample size
 300  \end{description}
 301  \end{cas}
 302
 303  \subsection*{One-tail and two-tail tests}
 304
 305  \subsubsection*{One tail}
 306
 307  \begin{itemize}
 308    \item \(\mu\) has changed in one direction
 309    \item State ``\(H_1: \mu \lessgtr \) known population mean''
 310  \end{itemize}
 311
 312  \subsubsection*{Two tail}
 313
 314  \begin{itemize}
 315    \item Direction of \(\Delta \mu\) is ambiguous
 316    \item State ``\(H_1: \mu \ne\) known population mean''
 317  \end{itemize}
 318
 319  For two tail tests:
 320  \begin{align*}
 321    p\text{-value} &= \Pr(|\overline{X} - \mu| \ge |\overline{x}_0 - \mu|) \\
 322    &= \left( |Z| \ge \left|\dfrac{\overline{x}_0 - \mu}{\sigma \div \sqrt{n}} \right| \right)
 323  \end{align*}
 324
 325  \subsection*{Modulus notation for two tail}
 326
 327  \(\Pr(|\overline{X} - \mu| \ge a) \implies\) ``the probability that the distance between \(\overline{\mu}\) and \(\mu\) is \(\ge a\)''
 328
 329  \subsection*{Inverse normal}
 330
 331  \begin{cas}
 332    \verb;invNormCdf("L", ;\(\alpha\)\verb;, ;\(\dfrac{\sigma}{n^\alpha}\)\verb;, ;\(\mu\)\verb;);
 333  \end{cas}
 334
 335  \subsection*{Errors}
 336
 337  \begin{description}[labelwidth=2.5cm, labelindent=0.5cm]
 338    \item [Type I error] \(H_0\) is rejected when it is \textbf{true}
 339    \item [Type II error] \(H_0\) is \textbf{not} rejected when it is \textbf{false}
 340  \end{description}
 341
 342% \subsection*{Using c.i. to find \(p\)}
 343% need more here
 344
 345\end{document}