1\documentclass[a4paper]{article}
2\usepackage{multicol}
3\usepackage[cm]{fullpage}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\setlength{\parindent}{0cm}
7\usepackage[nodisplayskipstretch]{setspace}
8\setstretch{1.3}
9\usepackage{graphicx}
10\usepackage{wrapfig}
11\usepackage{enumitem}
12\usepackage{supertabular}
13\usepackage{tabularx}
14\setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt,leftmargin=5pt}
15
16
17\begin{document}
18
19\pagenumbering{gobble}
20\begin{multicols}{3}
21
22% +++++++++++++++++++++++
23
24{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
25
26% +++++++++++++++++++++++
27\section{Motion}
28
29 $\operatorname{m/s} \, \times \, 3.6 = \operatorname{km/h}$
30
31 \subsection*{Inclined planes}
32 $F = m g \sin\theta - F_{\text{frict}} = m a$
33
34% -----------------------
35 \subsection*{Banked tracks}
36
37 \includegraphics[height=4cm]{graphics/banked-track.png}
38
39 $\theta = \tan^{-1} {{v^2} \over rg}$
40
41 $\Sigma F$ always acts towards centre (horizontally)
42
43 $\Sigma F = F_{\operatorname{norm}} + F_{\operatorname{g}}={{mv^2} \over r} = mg \tan \theta$
44
45 Design speed $v = \sqrt{gr\tan\theta}$
46
47 $n\sin \theta = {mv^2 \div r}, \quad n\cos \theta = mg$
48
49% -----------------------
50 \subsection*{Work and energy}
51
52 $W=Fs=Fs \cos \theta=\Delta \Sigma E$
53
54 $E_K = {1 \over 2}mv^2$ (kinetic)
55
56 $E_G = mgh$ (potential)
57
58 $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
59
60% -----------------------
61 \subsection*{Horizontal circular motion}
62
63 $v = {{2 \pi r} \over T}$
64
65 $f = {1 \over T}, \quad T = {1 \over f}$
66
67 $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
68
69 $\Sigma F, a$ towards centre, $v$ tangential
70
71 $\Sigma F = F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}=T \sin \theta = mg \tan \theta$
72
73 \includegraphics[height=4cm]{graphics/circ-forces.png}
74
75% -----------------------
76 \subsection*{Vertical circular motion}
77
78 % $T =$ tension, e.g. circular pendulum
79
80 $T+mg = {{mv^2}\over r}, v = \sqrt{rg}$ (top)
81
82 $T-mg = {{mv^2} \over r}, v = \sqrt{2rg}$ (bottom)
83
84 $E_K_{\text{bottom}}=E_K_{\text{top}}+mgh$
85
86% -----------------------
87 \subsection*{Projectile motion}
88 \begin{itemize}
89 \item $v_x$ is constant: $v_x = {s \over t}$
90 \item use suvat to find $t$ from $y$-component
91 \item vertical component gravity: $a_y = -g$
92 \end{itemize}
93
94 % \begin{align*}
95 $v=\sqrt{v^2_x + v^2_y}$ \hfill vectors \\
96 $h={{u^2\sin \theta ^2}\over 2g}$ \hfill max height \\
97 $x=ut\cos\theta$ \hfill $\Delta x$ at $t$ \\
98 $y=ut \sin \theta-{1 \over 2}gt^2$ \hfill height at $t$ \\
99 $t={{2u\sin\theta}\over g}$ \hfill time of flight \\
100 $d={v^2 \over g}\sin \theta$ \hfill horiz. range \\
101 % \end{align*}
102
103 \includegraphics[height=3.2cm]{graphics/projectile-motion.png}
104
105% -----------------------
106 \subsection*{Pulley-mass system}
107
108 $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
109
110 $\Sigma F = m_2g-m_1g=\Sigma ma$ (solve)
111
112% -----------------------
113 \subsection*{Graphs}
114 \begin{itemize}
115 \item{Force-time: $A=\Delta \rho$}
116 \item{Force-disp: $A=W$}
117 \item{Force-ext: $m=k,\quad A=E_{spr}$}
118 \item{$F_g$-dist: $A=\Delta \operatorname{gpe}$}
119 \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
120 \end{itemize}
121
122% -----------------------
123 \subsection*{Hooke's law}
124
125 $F=-kx$ (intercepts origin)
126
127 $\text{elastic potential energy} = {1 \over 2}kx^2$
128
129 $x={2mg \over k}$
130
131 Vertical: $\Delta E = {1 \over 2}kx^2 + mgh
132
133% -----------------------
134 \subsection*{Motion equations}
135
136 \begin{tabular}{ l r }
137 & no \\
138 $v=u+at$ & $x$ \\
139 $x = {1 \over 2}(v+u)t$ & $a$ \\
140 $x=ut+{1 \over 2}at^2$ & $v$ \\
141 $x=vt-{1 \over 2}at^2$ & $u$ \\
142 $v^2=u^2+2ax$ & $t$ \\
143 \end{tabular}
144
145% -----------------------
146 \subsection*{Momentum}
147
148 $\rho = mv$
149
150 $\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
151
152 $\Sigma (mv_0)=(\Sigma m)v_1$ (conservation)
153
154 % $\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
155
156 % $\Sigma E_K = \Sigma ({1 \over 2} m v^2) = {1 \over 2} (\Sigma m)v_f$
157
158 if elastic:
159 $$\sum _{i{\mathop {=}}1}^{n}E_K (i)=\sum _{i{\mathop {=}}1}^{n}({1 \over 2}m_i v_{i0}^2)={1 \over 2}\sum _{i{\mathop {=}}1}^{n}(m_i) v_f^2$$
160
161 % $n$-body collisions: $\rho$ of each body is independent
162
163% ++++++++++++++++++++++
164\section{Relativity}
165
166 \subsection*{Postulates}
167 1. Laws of physics are constant in all intertial reference frames
168
169 2. Speed of light $c$ is the same to all observers (Michelson-Morley)
170
171 $\therefore \, t$ must dilate as speed changes
172
173 {\bf high-altitude particles:} $t$ dilation means more particles reach Earth than expected (half-life greater when obs. from Earth)
174
175 {\bf Inertial reference frame} $a=0$
176
177 {\bf Proper time $t_0$ $\vert$ length $l_0$} measured by observer in same frame as events
178
179% -----------------------
180 \subsection*{Lorentz factor}
181
182 $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}, \quad v = c\sqrt{1-{1 \over \gamma^2}}$$
183
184 $t=t_0 \gamma$ ($t$ longer in moving frame)
185
186 $l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
187
188 $m=m_0 \gamma$ (mass dilation)
189
190% -----------------------
191 \subsection*{Energy and work}
192
193 Total energy = mass energy
194
195 $E_{\text{rest}} = mc^2, \quad E_K = (\gamma-1)mc^2$
196
197 $E_{\text{total}} = \gamma E_{\text{rest}} = E_K + E_{\text{rest}} = \gamma mc^2$
198
199 $W = \Delta E = \Delta mc^2=(\gamma-1)m_{\text{rest}} c^2$
200
201% -----------------------
202 \subsection*{Relativistic momentum}
203
204 $$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
205
206 $\rho \rightarrow \infty$ as $v \rightarrow c$
207
208 $v=c$ is impossible (requires $E=\infty$)
209
210 $$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
211
212% -----------------------
213
214% +++++++++++++++++++++++
215\section{Fields and power}
216
217 \subsection*{Non-contact forces}
218 \begin{itemize}
219 {\item electric (dipoles \& monopoles)}
220 {\item magnetic (dipoles only)}
221 {\item gravitational (monopoles only, $F_g=0$ at mid, attractive only)}
222 \end{itemize}
223
224 \vspace{1em}
225
226 \begin{itemize}
227 \item monopoles: lines towards centre
228 \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (two magnets) or $\rightarrow$ N (single)
229 \item closer field lines means larger force
230 \item dot: out of page, cross: into page
231 \item +ve corresponds to N pole
232 \item Inv. sq. ${E_1 \over E_2} = ({r_2 \over r_1})^2$
233 \end{itemize}
234
235 \includegraphics[height=2cm]{graphics/field-lines.png}
236 % \includegraphics[height=2cm]{graphics/bar-magnet-fields-rotated.png}
237
238% -----------------------
239 \subsection*{Gravity}
240
241 \[F_g=G{{m_1m_2}\over r^2}\tag{grav. force}\]
242 \[g={F_g \over m_2}=G{m_{1} \over r^2}\tag{field of $m_1$}\]
243 \[E_g = mg \Delta h\tag{gpe}\]
244 \[W = \Delta E_g = Fx\tag{work}\]
245 \[w=m(g-a) \tag{app. weight}\]
246
247 % \columnbreak
248
249% -----------------------
250 \subsection*{Satellites}
251
252 \[v=\sqrt{GM \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
253
254 \[T={\sqrt{4 \pi^2 r^3 \over {GM}}}=2 \pi \sqrt{r_{\text{alt}} \over g_{\text{alt}}}\tag{period}\]
255
256 \[r = \sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
257
258% -----------------------
259 \subsection*{Magnetic fields}
260 % \begin{itemize}
261 % \item field strength $B$ measured in tesla
262 % \item magnetic flux $\Phi$ measured in weber
263 % \item charge $q$ measured in coulombs
264 % \item emf $\mathcal{E}$ measured in volts
265 % \end{itemize}
266
267 % \[{E_1 \over E_2}={r_1 \over r_2}^2\]
268
269 \[F=qvB\tag{$F$ on moving $q$}\]
270 \[F=IlB\tag{$F$ of $B$ on $I$}\]
271 \[B={mv \over qr}\tag{field strength on e-}\]
272 \[r={mv \over qB} \tag{radius of $q$ in $B$}\]
273
274 if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
275
276% -----------------------
277 \subsection*{Electric fields}
278
279 \[F=qE(=ma) \tag{strength} \]
280 \[F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \]
281 \[E=k{q \over r^2} \tag{field on point charge} \]
282 \[E={V \over d} \tag{field between plates}\]
283 \[F=BInl \tag{force on a coil} \]
284 \[\Phi = B_{\perp}A\tag{magnetic flux} \]
285 \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} = Blv\tag{induced emf} \]
286 \[{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \]
287
288 \textbf{Lenz's law:} $I_{\operatorname{emf}}$ opposes $\Delta \Phi$ \\
289 (emf creates $I$ with associated field that opposes $\Delta \Phi$)
290
291 \textbf{Eddy currents:} counter movement within a field
292
293 \textbf{Right hand grip:} thumb points to $I$ (single wire) or N (solenoid / coil)
294
295 \textbf{Magnet through ring:} consider $g$
296
297 \includegraphics[height=2cm]{graphics/slap-2.jpeg}
298 \includegraphics[height=3cm]{graphics/grip.png}
299
300 % \textbf{Right hand slap:} $B \perp I \perp F$ \\
301 % ($I$ = thumb)
302
303 \includegraphics[width=\columnwidth]{graphics/lenz.png}
304
305 \textbf{Flux-time graphs:} $m \times n = \operatorname{emf}.$
306 If $f$ increases, ampl. \& $f$ of $\mathcal{E}$ increase
307
308 \textbf{Xfmr} core strengthens \& focuses $\Phi$
309
310 \columnbreak
311
312% -----------------------
313 \subsection*{Particle acceleration}
314
315 $1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
316
317 e- accelerated with $x$ V is given $x$ eV
318
319 \[W={1\over2}mv^2=qV \tag{field or points}\]
320 \[V_{\text{point}} = (V_1 - V_2) \div 2 \tag{if midpoint} \]
321 \[v=\sqrt{{2qV} \over {m}}\tag{velocity of particle}\]
322
323 Circular path: $F\perp B \perp v$
324
325% -----------------------
326 \subsection*{Power transmission}
327
328 % \begin{align*}
329 \[V_{\operatorname{rms}}={V_{\operatorname{p}}\over \sqrt{2}}={V_{\operatorname{p\rightarrow p}}\over {2 \sqrt{2}}} \]
330 \[P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \]
331 \[V_{\operatorname{loss}}=IR \]
332 % \end{align*}
333
334 Use high-$V$ side for correct $|V_{drop}|$
335
336 \begin{itemize}
337 {\item Parallel $V$ is constant}
338 {\item Series $V$ shared within branch}
339 \end{itemize}
340
341% -----------------------
342 \subsection*{Motors}
343% \begin{wrapfigure}{r}{-0.1\textwidth}
344
345 \includegraphics[height=4cm]{graphics/dc-motor-2.png}
346 % \includegraphics[height=3cm]{graphics/ac-motor.png} \\
347 \includegraphics[height=4cm]{graphics/ac-generator.png} \\
348
349 Force on I-carying wire, not Cu \\
350 $F=0$ for front & back of coil (parallel) \\
351 Any angle $> 0$ will produce force \\
352% \end{wrapfigure}
353 \textbf{DC:} split ring (two halves)
354
355% \begin{wrapfigure}{r}{0.3\textwidth}
356
357% \end{wrapfigure}
358 \textbf{AC:} slip ring (separate rings with constant contact)
359
360% \pagebreak
361
362% +++++++++++++++++++++++
363\section{Waves}
364
365 \textbf{nodes:} fixed on graph \\
366 \textbf{amplitude:} max disp. from $y=0$ \\
367 \textbf{rarefactions} and \textbf{compressions} \\
368 \textbf{mechanical:} transfer of energy without net transfer of matter \\
369
370
371 \textbf{Longitudinal (motion $||$ wave)}
372 \includegraphics[width=6cm]{graphics/longitudinal-waves.png}
373
374 \textbf{Transverse (motion $\perp$ wave)}
375 \includegraphics[width=6cm]{graphics/transverse-waves.png}
376
377 % -----------------------
378 $T={1 \over f}\quad$(period: time for one cycle)
379 $v=f \lambda \quad$(speed: displacement / sec)
380 $f={c \over \lambda}\quad\hspace{0.7em}$(for $v=c$)
381
382 % -----------------------
383 \subsection*{Doppler effect}
384
385 When $P_1$ approaches $P_2$, each wave $w_n$ has slightly less distance to travel than $w_{n-1}$. $w_n$ reaches observer sooner than $w_{n-1}$ ("apparent" $\lambda$).
386
387 % -----------------------
388 \subsection*{Interference}
389
390 \includegraphics[width=4.5cm]{graphics/poissons-spot.png} \\
391 Poissons's spot supports wave theory (circular diffraction)
392
393 \textbf{Standing waves} - constructive int. at resonant freq. Rebound from ends.
394
395 \textbf{Coherent } - identical frequency, phase, direction (ie strong & directional). e.g. laser
396
397 \textbf{Incoherent} - e.g. incandescent/LED
398
399
400
401
402
403 % -----------------------
404 \subsection*{Harmonics}
405
406 1st harmonic = fundamental
407
408 \textbf{for nodes at both ends:} \\
409 \(\hspace{2em} \lambda = {{2l} \div n}\)
410 \(\hspace{2em} f = {nv \div 2l} \)
411
412 \textbf{for node at one end ($n$ is odd):} \\
413 \(\hspace{2em} \lambda = {{4l} \div n}\)
414 \(\hspace{2em} f = {nv \div 4l} \) \\
415 alternatively, $\lambda = {4l \over {2n-1}}$ where $n\in \mathbb{Z}$ and $n+1$ is the next possible harmonic
416
417
418 % \(a=2\) for nodes at both ends, \\ \(a=4\) for node at one end
419
420 % -----------------------
421 \subsection*{Polarisation}
422 \includegraphics[height=3.5cm]{graphics/polarisation.png} \\
423 Transverse only. Reduces total $A$.
424
425 % -----------------------
426 \subsection*{Diffraction}
427 \includegraphics[width=6cm]{graphics/diffraction.jpg}
428 \includegraphics[width=6cm]{graphics/diffraction-2.png}
429 \begin{itemize}
430 % \item \(pd = |S_1P-S_2P|\) for \(p\) on screen
431 \item Constructive: \(pd = n\lambda, n \in \mathbb{Z}\)
432 \item Destructive: \(pd = (n-{1 \over 2})\lambda, n \in \mathbb{Z}\)
433 \item Path difference: \(\Delta x = {{\lambda l }\over d}\) where \\
434 % \(\Delta x\) = fringe spacing \\
435 \(l\) = distance from source to observer\\
436 \(d\) = separation between each wave source (e.g. slit) \(=S_1-S_2\)
437 \item diffraction $\propto {\lambda \over d} \propto$ fringe spacing
438 \item $d(|\overrightarrow{S_1W}|-|\overrightarrow{S_2W}|)=d \Delta x = \lambda l$
439 \item significant diffraction when ${\lambda \over \Delta x} \ge 1$
440 \item diffraction creates distortion (electron $\gt$ optical microscopes)
441 \end{itemize}
442
443
444 % -----------------------
445 \subsection*{Refraction}
446 \includegraphics[height=3.5cm]{graphics/refraction.png}
447
448 When a medium changes character, light is \emph{reflected}, \emph{absorbed}, and \emph{transmitted}. $\lambda$ changes, not $f$. $n$ changes slightly with $f$ (dispersion)
449
450 angle of incidence $\theta_i =$ angle of reflection $\theta_r$
451
452 Critical angle $\theta_c = \sin^{-1}{n_2 \over n_1}$
453
454 Snell's law $n_1 \sin \theta_1=n_2 \sin \theta_2$
455
456 ${v_1 \div v_2} = {\sin\theta_1 \div \sin\theta_2}$
457
458 $n_1 v_1 = n_2 v_2$
459
460 $n={c \over v}$
461
462
463% +++++++++++++++++++++++
464\section{Light and Matter}
465
466 % -----------------------
467 \subsection*{Planck's equation}
468
469 \[ \quad E=hf={hc \over \lambda}=\rho c = qV\]
470 \[ h=6.63 \times 10^{-34}\operatorname{J s}=4.14 \times 10^{-15} \operatorname{eV s} \]
471 \[ 1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J} \]
472
473 \subsection*{De Broglie's theory}
474
475 \[ \lambda = {h \over \rho} = {h \over mv} = {h \over {m \sqrt{2W \over m}}}\]
476 \[ \rho = {hf \over c} = {h \over \lambda} = mv, \quad E = \rho c \]
477 \[ v = \sqrt{2E_K \div m} \]
478
479 \begin{itemize}
480 \item cannot confirm with double-slit (slit $< r_{\operatorname{proton}}$)
481 \item confirmed by e- and x-ray patterns
482 \end{itemize}
483
484 \subsection*{Force of electrons}
485 \[ F={2P_{\text{in}}\over c} \]
486 % \begin{align*}
487 \[ \text{photons / sec} = {\text{total energy} \over \text{energy / photon}} \]
488 \[ ={{P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf} \]
489 % ={P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf}
490 % \end{align*}
491
492 \subsection*{X-ray electron interaction}
493
494 \begin{itemize}
495 \item e- stable if $mvr = n{h \over 2\pi}$ where $n \in \mathbb{Z}$ and $r$ is radius of orbit
496 \item $\therefore 2\pi r = n{h \over mv} = n \lambda$ (circumference)
497 \item if $2\pi r \ne n{h \over mv}$, no standing wave
498 \item if e- = x-ray diff patterns, $E_{\text{e-}}={\rho^2 \over 2m}={({h \over \lambda})^2 \div 2m}$
499 % \item calculating $h$: $\lambda = {h \over \rho}$
500 \end{itemize}
501
502 \subsection*{Photoelectric effect}
503
504 \begin{itemize}
505 \item $V_{\operatorname{supply}}$ does not affect photocurrent
506 \item $V_{\operatorname{sup}} > 0$: attracted to +ve
507 \item $V_{\operatorname{sup}} < 0$: attracted to -ve, $I\rightarrow 0$
508 \item $v$ of e- depends on shell
509 \item max $I$ (not $V$) depends on intensity
510 \end{itemize}
511
512 \subsubsection*{Threshold frequency $f_0$}
513
514 min $f$ for photoelectron release. if $f < f_0$, no photoelectrons.
515
516 \subsubsection*{Work function $\phi=hf_0$}
517
518 min $E$ for photoelectron release. determined by strength of bonding. Units: eV or J.
519
520 \subsubsection*{Kinetic energy E_K=hf - \phi = qV_0}
521
522
523 $V_0 = E_K$ in eV \\
524 % $E_K = x$-int of $V\cdot I$ graph (in eV) \\
525 dashed line below $E_K=0$
526
527
528 \subsubsection*{Stopping potential $V_0$ for min $I$}
529
530 $$V_0=h_{\text{eV}}(f-f_0)$$
531 Opposes induced photocurrent
532
533 \subsubsection*{Graph features}
534
535 \newcolumntype{b}{>{\hsize=.75\hsize}X}
536\newcolumntype{s}{>{\hsize=.3\hsize}X}
537
538 \begin{tabularx}{\columnwidth}{bbbb}
539\hline
540&$m$&$x$-int&$y$-int \\
541\hline
542\hline
543$f \cdot E_K$ & $h$ & $f_0$ & $-\phi$ \\
544$V \cdot I$ & & $V_0$ & intensity\\
545$f \cdot V$ & ${h \over q}$ & $f_0$ & $-\phi \over q$ &
546\hline
547\end{tabularx}
548
549
550
551 \subsection*{Spectral analysis}
552
553 \begin{itemize}
554 \item $\Delta E = hf = {hc \over \lambda}$ between ground / excited state
555 \item $E$ and $f$ of photon: $E_2 - E_1 = hf = {hc \over \lambda}$
556 \item Ionisation energy - min $E$ required to remove e-
557 \item EMR is absorbed/emitted when $E_{\operatorname{K-in}}=\Delta E_{\operatorname{shells}}$ (i.e. $\lambda = {hc \over \Delta E_{\operatorname{shells}}}$)
558 \item No. of lines - include all possible states. \Delta E \ne |\Delta E|
559 \end{itemize}
560
561 \subsection*{Uncertainty principle}
562
563 $\Delta x \approx {\text{slit width} \over 2$}
564
565 measurement: $\rho$ transferred to e-\\ slit: possibility of diff. before slit
566
567 \subsection*{Wave-particle duality}
568
569 \subsubsection*{wave model}
570 \begin{itemize}
571 % \item cannot explain photoelectric effect
572 \item any $f$ works, given $t$
573 \item predicts delay between incidence and ejection
574 \item speed depends on medium
575 \item supported by bright spot in centre
576 \item $\lambda = {hc \over E}$
577 \end{itemize}
578
579 \subsubsection*{particle model}
580
581 \begin{itemize}
582 % \item explains photoelectric effect
583 \item rate of photoelectron release $\propto$ intensity
584 \item no time delay - one photon releases one electron
585 \item threshold frequency
586 \item double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
587 \item light exerts force
588 \item light bent by gravity
589 \item quantised energy
590 \item $\lambda = {h \over \rho}$
591 \end{itemize}
592
593 % +++++++++++++++++++++++
594 \section{Experimental \\ design}
595
596 \textbf{Absolute uncertainty} $\Delta$ \\
597 (same units as quantity)
598 \[ \Delta(m) = {{\mathcal{E}(m)} \over 100} \cdot m \]
599 \[ (A \pm \Delta A) + (B \pm \Delta A) = (A+B) \pm (\Delta A + \Delta B) \]
600 \[ (A \pm \Delta A) - (B \pm \Delta A) = (A-B) \pm (\Delta A + \Delta B) \]
601 \[ c(A \pm \Delta A) = cA \pm c \Delta A \]
602
603 \textbf{Relative uncertainty} $\mathcal{E}$ (unitless)
604 \[ \mathcal{E}(m) = {{\Delta(m)} \over m} \cdot 100 \]
605 \[ (A \pm \mathcal{E} A) \cdot (B \pm \mathcal{E} B) = (A \cdot B) \pm (\mathcal{E} A + \mathcal{E} B) \]
606 \[ (A \pm \mathcal{E} A) \div (B \pm \mathcal{E} B) = (A \div B) \pm (\mathcal{E} A + \mathcal{E} B) \]
607 \[ (A \pm \mathcal{E} A)^n = (A^n \pm n \mathcal{E} A) \]
608 \[ c(A \pm \mathcal{E} A)=cA \pm \mathcal{E} A \]
609
610 Uncertainty of a measurement is $1 \over 2$ the smallest division
611
612 \textbf{Precision} - concordance of values \\
613 \textbf{Accuracy} - closeness to actual value\\
614 \textbf{Random errors} - unpredictable, reduced by more tests \\
615 \textbf{Systematic errors} - not reduced by more tests \\
616 \textbf{Uncertainty} - margin of potential error \\
617 \textbf{Error} - actual difference \\
618 \textbf{Hypothesis} - can be tested experimentally \\
619 \textbf{Model} - evidence-based but indirect representation
620
621\end{multicols}
622
623\begin{center}
624 \includegraphics[height=2.95cm]{graphics/spectrum.png}
625\end{center}
626
627\end{document}