1\documentclass[a4paper]{article}
2\usepackage[dvipsnames, table]{xcolor}
3\usepackage{adjustbox}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\usepackage{array}
7\usepackage{blindtext}
8\usepackage{dblfloatfix}
9\usepackage{enumitem}
10\usepackage{fancyhdr}
11\usepackage[a4paper,margin=1.8cm]{geometry}
12\usepackage{graphicx}
13\usepackage{harpoon}
14\usepackage{hhline}
15\usepackage{import}
16\usepackage{keystroke}
17\usepackage{listings}
18\usepackage{makecell}
19\usepackage{mathtools}
20\usepackage{mathtools}
21\usepackage{multicol}
22\usepackage{multirow}
23\usepackage{pgfplots}
24\usepackage{pst-plot}
25\usepackage{rotating}
26%\usepackage{showframe} % debugging only
27\usepackage{subfiles}
28\usepackage{tabularx}
29\usepackage{tabu}
30\usepackage{tcolorbox}
31\usepackage{tikz-3dplot}
32\usepackage{tikz}
33\usepackage{tkz-fct}
34\usepackage[obeyspaces]{url}
35\usepackage{wrapfig}
36
37
38\usetikzlibrary{%
39 angles,
40 arrows,
41 arrows.meta,
42 calc,
43 datavisualization.formats.functions,
44 decorations,
45 decorations.markings,
46 decorations.text,
47 decorations.pathreplacing,
48 decorations.text,
49 scopes
50}
51
52\newcommand\given[1][]{\:#1\vert\:}
53\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
54
55\usepgflibrary{arrows.meta}
56\pgfplotsset{compat=1.16}
57\pgfplotsset{every axis/.append style={
58 axis x line=middle,
59 axis y line=middle,
60 axis line style={->},
61 xlabel={$x$},
62 ylabel={$y$},
63}}
64
65\psset{dimen=monkey,fillstyle=solid,opacity=.5}
66\def\object{%
67 \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
68 \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
69 \rput{*0}{%
70 \psline{->}(0,-2)%
71 \uput[-90]{*0}(0,-2){$\vec{w}$}}
72}
73
74\pagestyle{fancy}
75\fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
76\fancyhead[LO,LE]{Year 12 Specialist}
77\fancyhead[CO,CE]{Andrew Lorimer}
78
79\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
80\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
81\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
82\linespread{1.5}
83\setlength{\parindent}{0pt}
84\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
85
86\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}%
87\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}%
88\newcolumntype{Y}{>{\centering\arraybackslash}X}
89
90\definecolor{cas}{HTML}{cde1fd}
91\definecolor{important}{HTML}{fc9871}
92\definecolor{dark-gray}{gray}{0.2}
93\definecolor{light-gray}{HTML}{cccccc}
94\definecolor{peach}{HTML}{e6beb2}
95\definecolor{lblue}{HTML}{e5e9f0}
96
97\newcommand{\tg}{\mathop{\mathrm{tg}}}
98\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
99\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
100\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
101
102\newtcolorbox{cas}{colframe=cas!75!black, fonttitle=\sffamily\bfseries, title=On CAS, left*=3mm}
103\newtcolorbox{theorembox}[1]{colback=green!10!white, colframe=blue!20!white, coltitle=black, fontupper=\sffamily, fonttitle=\sffamily, #1}
104\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=darkgray, fontupper=\sffamily\bfseries}
105
106\begin{document}
107
108\title{\vspace{-22mm}Year 12 Specialist\vspace{-4mm}}
109\author{Andrew Lorimer}
110\date{}
111\maketitle
112\vspace{-9mm}
113\begin{multicols}{2}
114
115 \section{Complex numbers}
116
117 \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\]
118 \begin{align*}
119 \text{Cartesian form: } & a+bi\\
120 \text{Polar form: } & r\operatorname{cis}\theta
121 \end{align*}
122
123 \subsection*{Operations}
124
125 \begin{tabularx}{\columnwidth}{|r|X|X|}
126 \hline
127 \rowcolor{cas}
128 & \textbf{Cartesian} & \textbf{Polar} \\
129 \hline
130 \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\
131 \hline
132 \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\
133 \cline{1-1}\cline{3-3}
134 \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\
135 \hline
136 \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\
137 \hline
138 \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\) \\
139 \hline
140 \end{tabularx}
141
142 \subsubsection*{Scalar multiplication in polar form}
143
144 For \(k \in \mathbb{R}^+\):
145 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\]
146
147 \noindent For \(k \in \mathbb{R}^-\):
148 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\]
149
150 \subsection*{Conjugate}
151 \vspace{-7mm} \hfill \colorbox{cas}{\texttt{conjg(a+bi)}}
152 \begin{align*}
153 \overline{z} &= a \mp bi\\
154 &= r \operatorname{cis}(-\theta)
155 \end{align*}
156
157 \subsubsection*{Properties}
158
159 \begin{align*}
160 \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\
161 \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\
162 \overline{kz} &= k\overline{z} \> \forall \> k \in \mathbb{R}\\
163 z\overline{z} &= (a+bi)(a-bi)\\
164 &= a^2 + b^2\\
165 &= |z|^2
166 \end{align*}
167
168 \subsection*{Modulus}
169
170 \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\]
171
172 \subsubsection*{Properties}
173
174 \begin{align*}
175 |z_1z_2|&=|z_1||z_2|\\
176 \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\
177 |z_1+z_2|&\le|z_1|+|z_2|
178 \end{align*}
179
180 \subsection*{Multiplicative inverse}
181
182 \begin{align*}
183 z^{-1}&=\frac{a-bi}{a^2+b^2}\\
184 &=\frac{\overline{z}}{|z|^2}a\\
185 &=r \operatorname{cis}(-\theta)
186 \end{align*}
187
188 \subsection*{Dividing over \(\mathbb{C}\)}
189
190 \begin{align*}
191 \frac{z_1}{z_2}&=z_1z_2^{-1}\\
192 &=\frac{z_1\overline{z_2}}{|z_2|^2}\\
193 &=\frac{(a+bi)(c-di)}{c^2+d^2}\\
194 & \text{then rationalise denominator}
195 \end{align*}
196
197 \subsection*{Polar form}
198
199 \[ r \operatorname{cis} \theta = r\left( \cos \theta + i \sin \theta \right) \]
200
201 \begin{itemize}
202 \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)}
203 \item{\(\theta = \operatorname{arg}(z)\) \hfill \colorbox{cas}{\texttt{arg(a+bi)}}}
204 \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}}
205 \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions}
206 \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)}
207 \end{itemize}
208
209 \begin{cas}
210 \-\hspace{1em}\verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|
211 \end{cas}
212
213 \subsection*{de Moivres' theorem}
214
215 \begin{theorembox}{}
216 \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
217 \end{theorembox}
218
219 \subsection*{Complex polynomials}
220
221 Include \(\pm\) for all solutions, incl. imaginary
222
223 \begin{tabularx}{\columnwidth}{ R{0.55} X }
224 \hline
225 Sum of squares & \(\begin{aligned}
226 z^2 + a^2 &= z^2-(ai)^2\\
227 &= (z+ai)(z-ai) \end{aligned}\) \\
228 \hline
229 Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
230 \hline
231 Division & \(P(z)=D(z)Q(z)+R(z)\) \\
232 \hline
233 Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
234 \hline
235 Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\
236 \hline
237 Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)\\
238 \hline
239 \end{tabularx}
240
241 \begin{theorembox}{title=Factor theorem}
242 If \(\beta z + \alpha\) is a factor of \(P(z)\), \\
243 \-\hspace{1em}then \(P(-\dfrac{\alpha}{\beta})=0\).
244 \end{theorembox}
245
246 \subsection*{\(n\)th roots}
247
248 \(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
249
250 \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
251
252 \begin{itemize}
253
254 \item{Same modulus for all solutions}
255 \item{Arguments separated by \(\frac{2\pi}{n} \therefore\) there are \(n\) roots}
256 \item{If one square root is \(a+bi\), the other is \(-a-bi\)}
257 \item{Give one implicit \(n\)th root \(z_1\), function is \(z=z_1^n\)}
258 \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))}
259 \end{itemize}
260
261 \noindent For \(0=az^2+bz+c\), use quadratic formula:
262
263 \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
264
265 \subsection*{Fundamental theorem of algebra}
266
267 A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\):
268
269 \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\]
270 \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\]
271
272 \subsection*{Argand planes}
273
274 \begin{center}\begin{tikzpicture}[scale=2]
275 \draw [->] (-0.2,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
276 \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$};
277 \coordinate (P) at (1,1);
278 \coordinate (a) at (1,0);
279 \coordinate (b) at (0,1);
280 \coordinate (O) at (0,0);
281 \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)};
282 \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)};
283 \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)};
284 \begin{scope}
285 \path[clip] (O) -- (P) -- (a);
286 \fill[red, opacity=0.5, draw=black] (O) circle (2mm);
287 \node at ($(O)+(20:3mm)$) {$\theta$};
288 \end{scope}
289 \filldraw (P) circle (0.5pt);
290 \end{tikzpicture}\end{center}
291
292 \begin{itemize}
293 \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)}
294 \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}}
295 \end{itemize}
296
297 \subsection*{Sketching complex graphs}
298
299 \subsubsection*{Rays/lines \qquad \(\operatorname{Arg}( z\pm b)=\theta\)}
300
301 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
302 \draw [->] (-0.75,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
303 \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$};
304 \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1);
305 \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)};
306 \begin{scope}
307 \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0);
308 \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm);
309 \end{scope}
310 \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)};
311 \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)};
312 \node [brown, mydot] at (-0.25,0) {};
313 \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)};
314 \node [left, font=\footnotesize] at (0,-1) {\(-1\)};
315 \node [below, font=\footnotesize] at (1,0) {\(1\)};
316 \end{tikzpicture}\end{center}
317
318 \begin{itemize}
319 \item \(\operatorname{Arg}(z \pm b) = \theta\) (ray)
320 \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
321 \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
322 \item \(|z - (a+bi)|=|z - (c+di)| \\ \implies \frac{2(c-a)x + a^2 + b^2 - c^2 - d^2}{2(b-d)}\)
323 \item \(\operatorname{Re}(z) \pm \operatorname{Im}(z) = c\)
324 \end{itemize}
325
326 \subsubsection*{Circles}
327
328 \begin{itemize}
329 \item \(|z-z_1|^2=c^2|z_2+2|^2\)
330 \item \(|z-(a+bi)|=c \implies (x-a)^2+_(y-b)^2=c^2\)
331 \item \(z \overline{z} = r^2\)
332 \end{itemize}
333
334 \subsubsection*{Regions \qquad \(\operatorname{Arg}(z) \lessgtr \theta\)}
335
336 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
337 \draw [->] (0,0) -- (1,0) node [right] {$\operatorname{Re}(z)$};
338 \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$};
339 \draw [<-, dashed, thick, blue] (-1,0) -- (0,0);
340 \draw [->, thick, blue] (0,0) -- (1,1);
341 \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle;
342 \begin{scope}
343 \path[clip] (0,0) -- (1,1) -- (1,0);
344 \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm);
345 \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$};
346 \end{scope}
347 \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)};
348 \node [blue, mydot] {};
349 \end{tikzpicture}\end{center}
350
351
352 \section{Vectors}
353 \begin{center}\begin{tikzpicture}
354 \draw [->] (-0.5,0) -- (3,0) node [right] {\(x\)};
355 \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)};
356 \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)};
357 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
358 \draw [gray, dashed, thick] (0.5,0.5) -- (2.5,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, below]{\(x\vec{i}\)};
359 \draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow};
360 \end{scope}
361 \node[black, right] at (2.5,1.5) {\(y\vec{j}\)};
362 \end{tikzpicture}\end{center}
363
364 \subsection*{Column notation}
365
366 \[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\]
367 \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\)
368
369 \subsection*{Scalar multiplication}
370
371 \[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\]
372
373 \noindent For \(k \in \mathbb{R}^-\), direction is reversed
374
375 \subsection*{Vector addition}
376 \begin{center}\begin{tikzpicture}[scale=1]
377 \coordinate (A) at (0,0);
378 \coordinate (B) at (2,2);
379 \draw [->, thick, red] (0,0) -- (2,2) node [pos=0.5, below right] {\(\vec{u}=2\vec{i}+2\vec{j}\)};
380 \draw [->, thick, blue] (2,2) -- (1,4) node [pos=0.5, above right] {\(\vec{v}=-\vec{i}+2\vec{j}\)};
381 \draw [->, thick, orange] (0,0) -- (1,4) node [pos=0.5, left] {\(\vec{u}+\vec{v}=\vec{i}+4\vec{j}\)};
382 \end{tikzpicture}\end{center}
383
384 \[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\]
385
386 \begin{itemize}
387 \item Draw each vector head to tail then join lines
388 \item Addition is commutative (parallelogram)
389 \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}) \implies \overrightharp{AB}=\boldsymbol{b}-\boldsymbol{a}\)
390 \end{itemize}
391
392 \subsection*{Magnitude}
393
394 \[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\]
395
396 \subsection*{Parallel vectors}
397
398 \[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
399
400 For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
401 \[\boldsymbol{a \cdot b}=\begin{cases}
402 |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
403 -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
404 \end{cases}\]
405 %\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg}
406 %\includegraphics[width=1]{graphics/vector-subtraction.jpg}
407
408 \subsection*{Perpendicular vectors}
409
410 \[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\]
411
412 \subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)}
413 \[\begin{split}\hat{\boldsymbol{a}} & = {\frac{1}{|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\]
414
415 \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)}
416
417
418 \begin{center}\begin{tikzpicture}[scale=2]
419 \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)};
420 \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)};
421 \begin{scope}
422 \path[clip] (1,0.5) -- (1,0) -- (0,0);
423 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
424 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
425 \end{scope}
426 \end{tikzpicture}\end{center}
427 \begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\ &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*}
428 \noindent\colorbox{cas}{On CAS:} \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}
429
430 \subsubsection*{Properties}
431
432 \begin{enumerate}
433 \item
434 \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\)
435 \item
436 \(\boldsymbol{a \cdot 0}=0\)
437 \item
438 \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\)
439 \item
440 \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
441 \item
442 \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\)
443 \item
444 \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
445 \end{enumerate}
446
447 \subsection*{Angle between vectors}
448
449 \[\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}\]
450
451 \noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])}
452
453 (Action \(\rightarrow\) Vector \(\rightarrow\)Angle)
454
455 \subsection*{Angle between vector and axis}
456
457 \noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
458 which makes angles \(\alpha, \beta, \gamma\) with positive side of
459 \(x, y, z\) axes:
460 \[\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}\]
461
462 \noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle
463 between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
464 \(x\)-axis
465
466 \subsection*{Projections \& resolutes}
467
468 \begin{tikzpicture}[scale=3]
469 \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)};
470 \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)};
471 \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)};
472 \begin{scope}
473 \path[clip] (1,0.5) -- (1,0) -- (0,0);
474 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
475 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
476 \end{scope}
477 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
478 \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)};
479 \end{scope}
480 \draw (0,0) coordinate (O)
481 (1,0) coordinate (A)
482 (1,0.5) coordinate (B)
483 pic [draw,red,angle radius=2mm] {right angle = O--A--B};
484 \end{tikzpicture}
485
486 \subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)}
487
488 \begin{align*}
489 \boldsymbol{u} & = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} \\
490 & = \left(\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right) \\
491 & = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
492 \end{align*}
493
494 \subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)}
495 \[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\]
496
497 \subsubsection*{\(|\boldsymbol{u}|\) (scalar projection/resolute)}
498 \begin{align*}
499 s &= |\boldsymbol{u}|\\
500 &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\
501 &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\\
502 &= |\boldsymbol{a}| \cos \theta
503 \end{align*}
504
505 \subsubsection*{Rectangular (\(\parallel,\perp\)) components}
506
507 \[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\]
508
509
510 \subsection*{Vector proofs}
511
512 \textbf{Concurrent:} intersection of \(\ge\) 3 lines
513
514 \begin{tikzpicture}
515 \draw [blue] (0,0) -- (1,1);
516 \draw [red] (1,0) -- (0,1);
517 \draw [brown] (0.4,0) -- (0.6,1);
518 \filldraw (0.5,0.5) circle (2pt);
519 \end{tikzpicture}
520
521 \subsubsection*{Collinear points}
522
523 \(\ge\) 3 points lie on the same line
524
525 \begin{tikzpicture}
526 \draw [purple] (0,0) -- (4,1);
527 \filldraw (2,0.5) circle (2pt) node [above] {\(C\)};
528 \filldraw (1,0.25) circle (2pt) node [above] {\(A\)};
529 \filldraw (3,0.75) circle (2pt) node [above] {\(B\)};
530 \coordinate (O) at (2.8,-0.2);
531 \node at (O) [below] {\(O\)};
532 \begin{scope}[->, orange, thick]
533 \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)};
534 \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)};
535 \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)};
536 \end{scope}
537 \end{tikzpicture}
538
539 \begin{align*}
540 \text{e.g. Prove that}\\
541 \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\
542 \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\
543 &= \overrightharp{OA} + m\overrightharp{AB}\\
544 &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\
545 &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\
546 &=(1-m)\boldsymbol{a}+m{b}
547 \end{align*}
548 \begin{align*}
549 \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\
550 \text{where } \lambda + \mu &= 1\\
551 \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1
552 \end{align*}
553
554
555 \subsubsection*{Parallelograms}
556
557 \begin{center}\begin{tikzpicture}
558 \coordinate (O) at (0,0) node [below left] {\(O\)};
559 \coordinate (A) at (4,0);
560 \coordinate (B) at (6,2);
561 \coordinate (C) at (2,2);
562 \coordinate (D) at (6,0);
563
564 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (O)--(A) node [below left] {\(A\)};
565 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (A)--(B) node [above right] {\(B\)};
566 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (B)--(C) node [above left] {\(C\)};
567 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (C)--(O);
568
569 \draw [gray, dashed] (O) -- (B) node [pos=0.75] {\(\diagdown\diagdown\)} node [pos=0.25] {\(\diagdown\diagdown\)};
570 \draw [gray, dashed] (A) -- (C) node [pos=0.75] {\(\diagup\)} node [pos=0.25] {\(\diagup\)};
571 \begin{scope}
572 \path[clip] (C) -- (A) -- (O);
573 \fill[orange, opacity=0.5, draw=black] (0,0) circle (4mm);
574 \node at ($(0,0)+(20:8mm)$) {\(\theta\)};
575 \end{scope}
576 \draw [gray, thick, dotted] (B) -- (D) node [pos=0.5, right, black, font=\footnotesize] {\(|\boldsymbol{c}|\sin\theta\)} (A) -- (D) node [pos=0.5, below, black, font=\footnotesize] {\(|\boldsymbol{c}|\cos\theta\)};
577 \draw pic [draw,thick,red,angle radius=2mm] {right angle=O--D--B};
578 \end{tikzpicture}\end{center}
579
580 \begin{itemize}
581 \item
582 Diagonals \(\overrightharp{OB}, \overrightharp{AC}\) bisect each other
583 \item
584 If diagonals are equal length, it is a rectangle
585 \item
586 \(|\overrightharp{OB}|^2 + |\overrightharp{CA}|^2 = |\overrightharp{OA}|^2 + |\overrightharp{AB}|^2 + |\overrightharp{CB}|^2 + |\overrightharp{OC}|^2\)
587 \item
588 Area \(=\boldsymbol{c} \cdot \boldsymbol{a}\)
589 \end{itemize}
590
591 \subsubsection*{Perpendicular bisectors of a triangle}
592
593\hspace{-1.5cm}\begin{tikzpicture}
594 [
595 scale=3,
596 >=stealth,
597 point/.style = {draw, circle, fill = black, inner sep = 1pt},
598 dot/.style = {draw, circle, fill = black, inner sep = .2pt},
599 thick
600 ]
601
602 \node at (-1,1) [text width=5cm, rounded corners, fill=lblue, inner sep=1ex]
603 {
604 \sffamily The three bisectors meet at the circumcenter \(Z\) where \(|\overrightharp{ZA}| = |\overrightharp{ZB}| = |\overrightharp{ZC}|\).
605 };
606
607 % the circle
608 \def\rad{1}
609 \node (origin) at (0,0) [point, label = {right: {\(Z\)}}]{};
610 \draw [thin] (origin) circle (\rad);
611
612 % triangle nodes: just points on the circle
613 \node (n1) at +(60:\rad) [point, label = above:\(A\)] {};
614 \node (n2) at +(-145:\rad) [point, label = below:\(B\)] {};
615 \node (n3) at +(-45:\rad) [point, label = {below right:\(C\)}] {};
616
617 % triangle edges: connect the vertices, and leave a node at the midpoint
618 \draw[orange] (n3) -- node (a) [label = {above right:\(D\)}] {} (n1);
619 \draw[blue] (n3) -- node (b) [label = {below right:\(F\)}] {} (n2);
620 \draw[red] (n1) -- node (c) [label = {left: \(E\)}] {} (n2);
621
622 % Bisectors
623 % start at the point lying on the line from (origin) to (a), at
624 % twice that distance, and then draw a path going to the point on
625 % the line lying on the line from (a) to the (origin), at 3 times
626 % that distance.
627 \draw[orange, dotted]
628 ($ (origin) ! 2 ! (a) $)
629 node [right] {\sffamily Bisector \(AC\)}
630 -- ($(a) ! 3 ! (origin)$ );
631
632 % similarly for origin and b
633 \draw[blue, dotted]
634 ($ (origin) ! 2 ! (b) $)
635 -- ($(b) ! 3 ! (origin)$ )
636 node [right] {\sffamily Bisector \(BC\)};
637
638 \draw[red, dotted]
639 ($ (origin) ! 5 ! (c) $)
640 -- ($(c) ! 7 ! (origin)$ )
641 node [right] {\sffamily Bisector \(AB\)};
642
643 \draw[gray, dashed, thin] (n1) -- (origin) -- (n2);
644 \draw[gray, dashed, thin] (origin) -- (n3);
645
646 % Right angle symbols
647 \def\ralen{.5ex} % length of the short segment
648 \foreach \inter/\first/\last in {a/n3/origin, b/n2/origin, c/n2/origin}
649 {
650 \draw [thin] let \p1 = ($(\inter)!\ralen!(\first)$), % point along first path
651 \p2 = ($(\inter)!\ralen!(\last)$), % point along second path
652 \p3 = ($(\p1)+(\p2)-(\inter)$) % corner point
653 in
654 (\p1) -- (\p3) -- (\p2); % path
655 }
656\end{tikzpicture}
657
658 \begin{theorembox}{title=Perpendicular bisector theorem}
659 If a point \(P\) lies on the perpendicular bisector of line \(\overrightharp{XY}\), then \(P\) is equidistant from the endpoints of the bisected segment
660 \[ \text{i.e. } |\overrightharp{PX}| = |\overrightharp{PY}| \]
661 \end{theorembox}
662
663 \subsubsection*{Useful vector properties}
664
665 \begin{itemize}
666 \item
667 \(\boldsymbol{a} \parallel \boldsymbol{b} \implies \boldsymbol{b}=k\boldsymbol{a}\) for some
668 \(k \in \mathbb{R} \setminus \{0\}\)
669 \item
670 If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
671 least one point in common, then they lie on the same straight line
672 \item
673 \(\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0\)
674 \item
675 \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
676 \end{itemize}
677
678 \subsection*{Linear dependence}
679
680 \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly dependent if they are \(\nparallel\) and:
681 \begin{align*}
682 0&=k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c}\\
683 \therefore \boldsymbol{c} &= m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}
684 \end{align*}
685
686 \noindent \(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
687 independent if no vector in the set is expressible as a linear
688 combination of other vectors in set, or if they are parallel.
689
690 \subsection*{Three-dimensional vectors}
691
692 Right-hand rule for axes: \(z\) is up or out of page.
693
694 \tdplotsetmaincoords{60}{120}
695 \begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick},
696 vector/.style={-stealth,red,very thick},
697 vector guide/.style={dashed,gray,thick}]
698
699 %standard tikz coordinate definition using x, y, z coords
700 \coordinate (O) at (0,0,0);
701
702 %tikz-3dplot coordinate definition using x, y, z coords
703
704 \pgfmathsetmacro{\ax}{1}
705 \pgfmathsetmacro{\ay}{1}
706 \pgfmathsetmacro{\az}{1}
707
708 \coordinate (P) at (\ax,\ay,\az);
709
710 %draw axes
711 \draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
712 \draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
713 \draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
714
715 %draw a vector from O to P
716 \draw[vector] (O) -- (P);
717
718 %draw guide lines to components
719 \draw[vector guide] (O) -- (\ax,\ay,0);
720 \draw[vector guide] (\ax,\ay,0) -- (P);
721 \draw[vector guide] (P) -- (0,0,\az);
722 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
723 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
724 \draw[vector guide] (\ax,\ay,0) -- (\ax,0,0);
725 \node[tdplot_main_coords,above right]
726 at (\ax,\ay,\az){(\ax, \ay, \az)};
727 \end{tikzpicture}\end{center}
728
729 \subsection*{Parametric vectors}
730
731 Parametric equation of line through point \((x_0, y_0, z_0)\) and
732 parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
733
734 \[\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\]
735
736 \section{Circular functions}
737
738 \(\sin(bx)\) or \(\cos(bx)\): period \(=\frac{2\pi}{b}\)
739
740 \noindent \(\tan(nx)\): period \(=\frac{\pi}{n}\)\\
741 \indent\indent\indent asymptotes at \(x=\frac{(2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\)
742
743 \subsection*{Reciprocal functions}
744
745 \subsubsection*{Cosecant}
746
747 \[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\]
748
749 \begin{itemize}
750 \item
751 \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\)
752 \item
753 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
754 \item
755 \textbf{Turning points} at
756 \(\theta = \frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\)
757 \item
758 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
759 \end{itemize}
760
761 \subsubsection*{Secant}
762
763\begin{tikzpicture}
764 \begin{axis}[ytick={-1,1}, yticklabels={\(-1\), \(1\)}, xmin=-7,xmax=7,ymin=-3,ymax=3,enlargelimits=true, xtick={-6.2830, -3.1415, 3.1415, 6.2830},xticklabels={\(-2\pi\), \(-\pi\), \(\pi\), \(2\pi\)}]
765% \addplot[blue, domain=-6.2830:6.2830,unbounded coords=jump,samples=80] {sec(deg(x))};
766 \addplot[blue, restrict y to domain=-10:10, domain=-7:7,samples=100] {sec(deg(x))} node [pos=0.93, black, right] {\(\operatorname{sec} x\)};
767 \addplot[red, dashed, domain=-7:7,samples=100] {cos(deg(x))};
768 \draw [gray, dotted, thick] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
769 \draw [gray, dotted, thick] ({axis cs:4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:4.71239,0}|-{rel axis cs:0,1});
770 \draw [gray, dotted, thick] ({axis cs:-4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:-4.71239,0}|-{rel axis cs:0,1});
771 \draw [gray, dotted, thick] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
772\end{axis}
773 \node [black] at (7,3.5) {\(\cos x\)};
774\end{tikzpicture}
775
776 \[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\]
777
778 \begin{itemize}
779
780 \item
781 \textbf{Domain}
782 \(= \mathbb{R} \setminus \frac{(2n + 1) \pi}{2} : n \in \mathbb{Z}\}\)
783 \item
784 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
785 \item
786 \textbf{Turning points} at
787 \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
788 \item
789 \textbf{Asymptotes} at
790 \(\theta = \frac{(2n + 1) \pi}{2} \> \vert \> n \in \mathbb{Z}\)
791 \end{itemize}
792
793 \subsubsection*{Cotangent}
794
795\begin{tikzpicture}
796 \begin{axis}[xmin=-3,xmax=3,ymin=-1.5,ymax=1.5,enlargelimits=true, xtick={-3.1415, -1.5708, 1.5708, 3.1415},xticklabels={\(-\pi\), \(-\frac{\pi}{2}\), \(\frac{\pi}{2}\), \(\pi\)}]
797 \addplot[blue, smooth, domain=-3:-0.1,unbounded coords=jump,samples=105] {cot(deg(x))} node [pos=0.3, left] {\(\operatorname{cot} x\)};
798\addplot[blue, smooth, domain=0.1:3,unbounded coords=jump,samples=105] {cot(deg(x))};
799\addplot[red, smooth, dashed] gnuplot [domain=-1.5:1.5,unbounded coords=jump,samples=105] {tan(x)};
800\addplot[red, smooth, dashed] gnuplot [domain=-3.5:-1.8,unbounded coords=jump,samples=105] {tan(x)} node [pos=0.5, right] {\(\tan x\)};
801\addplot[red, smooth, dashed] gnuplot [domain=1.8:3.5,unbounded coords=jump,samples=105] {tan(x)};
802 \draw [thick, red, dotted] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
803 \draw [thick, blue, dotted] ({axis cs:-3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:-3.1415,0}|-{rel axis cs:0,1});
804 \draw [thick, blue, dotted] ({axis cs:0,0}|-{rel axis cs:0,0}) -- ({axis cs:0,0}|-{rel axis cs:0,1});
805 \draw [thick, blue, dotted] ({axis cs:3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:3.1415,0}|-{rel axis cs:0,1});
806 \draw [thick, red, dotted] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
807\end{axis}
808\end{tikzpicture}
809
810 \[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\]
811
812 \begin{itemize}
813
814 \item
815 \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\)
816 \item
817 \textbf{Range} \(= \mathbb{R}\)
818 \item
819 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
820 \end{itemize}
821
822 \subsubsection*{Symmetry properties}
823
824 \[\begin{split}
825 \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
826 \operatorname{sec} (-x) & = \operatorname{sec} x \\
827 \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
828 \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
829 \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
830 \operatorname{cot} (-x) & = - \operatorname{cot} x
831 \end{split}\]
832
833 \subsubsection*{Complementary properties}
834
835 \[\begin{split}
836 \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
837 \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
838 \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
839 \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
840 \end{split}\]
841
842 \subsubsection*{Pythagorean identities}
843
844 \[\begin{split}
845 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
846 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
847 \end{split}\]
848
849 \subsection*{Compound angle formulas}
850
851 \[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\]
852 \[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\]
853 \[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\]
854
855 \subsection*{Double angle formulas}
856
857 \[\begin{split}
858 \cos 2x &= \cos^2 x - \sin^2 x \\
859 & = 1 - 2\sin^2 x \\
860 & = 2 \cos^2 x -1
861 \end{split}\]
862
863 \[\sin 2x = 2 \sin x \cos x\]
864
865 \[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\]
866
867 \subsection*{Inverse circular functions}
868
869 \begin{tikzpicture}
870 \begin{axis}[ymin=-2, ymax=4, xmin=-1.1, xmax=1.1, ytick={-1.5708, 1.5708, 3.14159},yticklabels={$-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\pi$}]
871 \addplot[color=red, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {asin(x)} node [pos=0.25, below right] {\(\sin^{-1}x\)};
872 \addplot[color=blue, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {acos(x)} node [pos=0.25, below left] {\(\cos^{-1}x\)};
873 \addplot[mark=*, red] coordinates {(-1,-1.5708)} node[right, font=\footnotesize]{\((-1,-\frac{\pi}{2})\)} ;
874 \addplot[mark=*, red] coordinates {(1,1.5708)} node[left, font=\footnotesize]{\((1,\frac{\pi}{2})\)} ;
875 \addplot[mark=*, blue] coordinates {(1,0)};
876 \addplot[mark=*, blue] coordinates {(-1,3.1415)} node[right, font=\footnotesize]{\((-1,\pi)\)} ;
877 \end{axis}
878 \end{tikzpicture}\\
879
880 Inverse functions: \(f(f^{-1}(x)) = x\) (restrict domain)
881
882 \[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\]
883 \hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\)
884
885 \[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\]
886 \hfill where \(\cos y = x, \> y \in [0, \pi]\)
887
888 \[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\]
889 \hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\)
890
891 \begin{tikzpicture}
892 \begin{axis}[yticklabel style={yshift=1.0pt, anchor=north east},x=0.1cm, y=1cm, ymax=2, ymin=-2, xticklabels={}, ytick={-1.5708,1.5708},yticklabels={\(-\frac{\pi}{2}\),\(\frac{\pi}{2}\)}]
893 \addplot[color=orange, smooth] gnuplot [domain=-35:35, unbounded coords=jump,samples=350] {atan(x)} node [pos=0.5, above left] {\(\tan^{-1}x\)};
894 \addplot[gray, dotted, thick, domain=-35:35] {1.5708} node [black, font=\footnotesize, below right, pos=0] {\(y=\frac{\pi}{2}\)};
895 \addplot[gray, dotted, thick, domain=-35:35] {-1.5708} node [black, font=\footnotesize, above left, pos=1] {\(y=-\frac{\pi}{2}\)};
896 \end{axis}
897 \end{tikzpicture}
898
899 \subsection*{Mensuration}
900
901 \begin{tikzpicture}[draw=blue!70,thick]
902 \filldraw[fill=lblue] circle (2cm);
903 \filldraw[fill=white]
904 (320:2cm) node[right] {}
905 -- (220:2cm) node[left] {}
906 arc[start angle=220, end angle=320, radius=2cm]
907 -- cycle;
908 \node {Major Segment};
909 \node at (-90:1.5) {Minor Segment};
910
911 \begin{scope}[xshift=4.5cm]
912 \draw [fill=lblue] circle (2cm);
913 \filldraw[fill=white]
914 (320:2cm) node[right] {}
915 -- (0,0) node[above] {}
916 -- (220:2cm) node[left] {}
917 arc[start angle=220, end angle=320, radius=2cm]
918 -- cycle;
919 \node at (90:1cm) {Major Sector};
920 \node at (-90:1.5) {Minor Sector};
921 \end{scope}
922 \end{tikzpicture}
923
924
925 \begin{align*}
926 \textbf{Sectors: } A &= \pi r^2 \dfrac{\theta}{2\pi} \\
927 &= \dfrac{r^2 \theta}{2}
928 \end{align*}
929
930 \[ \textbf{Segments: } A = \dfrac{r^2}{2} \left(\theta - \sin \theta \right) \]
931
932 \begin{align*}
933 \textbf{Chords: } \operatorname{crd} \theta &= \sqrt{(1 - \cos\theta)^2 + \sin^2 \theta} \\
934 &= \sqrt{2 - 2\cos\theta} \\
935 &= 2 \sin \left(\dfrac{\theta}{2}\right)
936 \end{align*}
937
938 \section{Differential calculus}
939
940 \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
941
942 \subsection*{Limits}
943
944 \[\lim_{x \rightarrow a}f(x)\]
945 \(L^-,\quad L^+\) \qquad limit from below/above\\
946 \(\lim_{x \to a} f(x)\) \quad limit of a point\\
947
948 \noindent For solving \(x\rightarrow\infty\), put all \(x\) terms in denominators\\
949 e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\]
950
951 \subsubsection*{Limit theorems}
952
953 \begin{enumerate}
954 \item
955 For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
956 \item
957 \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
958 \item
959 \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
960 \item
961 \(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant
962 \item
963 \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
964 \item
965 \(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\)
966 \end{enumerate}
967
968 \subsection*{Gradients}
969
970 \textbf{Secant (chord)} - line joining two points on curve\\
971 \textbf{Tangent} - line that intersects curve at one point
972
973 \subsubsection*{Points of Inflection}
974
975 \emph{Stationary point} - i.e.
976 \(f^\prime(x)=0\)\\
977 \emph{Point of inflection} - max \(|\)gradient\(|\) (i.e.
978 \(f^{\prime\prime} = 0\))
979
980 \subsubsection*{Strictly increasing/decreasing}
981
982 For \(x_2\) and \(x_1\) where \(x_2 > x_1\):
983
984 \textbf{strictly increasing}\\
985 \-\hspace{1em}where \(f(x_2) > f(x_1)\) or \(f^\prime(x)>0\)
986
987 \textbf{strictly decreasing}\\
988 \hspace{1em}where \(f(x_2) < f(x_1)\) or \(f^\prime(x)<0\)
989 \begin{warning}
990 Endpoints are included, even where \(\boldsymbol{\frac{dy}{dx}=0}\)
991 \end{warning}
992
993
994 \subsection*{Second derivative}
995 \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
996 \implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*}
997
998 \noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken
999
1000
1001 \subsection*{Slope fields}
1002
1003 \begin{tikzpicture}[declare function={diff(\x,\y) = \x+\y;}]
1004 \begin{axis}[axis equal, ymin=-4, ymax=4, xmin=-4, xmax=4, ticks=none, enlargelimits=true, ]
1005 \addplot[thick, orange, domain=-4:2] {e^(x)-x-1};
1006 \pgfplotsinvokeforeach{-4,...,4}{%
1007 \draw[gray] ( {#1 -0.1}, {4 - diff(#1, 4) *0.1}) -- ( {#1 +0.1}, {4 + diff(#1, 4) *0.1});
1008 \draw[gray] ( {#1 -0.1}, {3 - diff(#1, 3) *0.1}) -- ( {#1 +0.1}, {3 + diff(#1, 3) *0.1});
1009 \draw[gray] ( {#1 -0.1}, {2 - diff(#1, 2) *0.1}) -- ( {#1 +0.1}, {2 + diff(#1, 2) *0.1});
1010 \draw[gray] ( {#1 -0.1}, {1 - diff(#1, 1) *0.1}) -- ( {#1 +0.1}, {1 + diff(#1, 1) *0.1});
1011 \draw[gray] ( {#1 -0.1}, {0 - diff(#1, 0) *0.1}) -- ( {#1 +0.1}, {0 + diff(#1, 0) *0.1});
1012 \draw[gray] ( {#1 -0.1}, {-1 - diff(#1, -1) *0.1}) -- ( {#1 +0.1}, {-1 + diff(#1, -1) *0.1});
1013 \draw[gray] ( {#1 -0.1}, {-2 - diff(#1, -2) *0.1}) -- ( {#1 +0.1}, {-2 + diff(#1, -2) *0.1});
1014 \draw[gray] ( {#1 -0.1}, {-3 - diff(#1, -3) *0.1}) -- ( {#1 +0.1}, {-3 + diff(#1, -3) *0.1});
1015 \draw[gray] ( {#1 -0.1}, {-4 - diff(#1, -4) *0.1}) -- ( {#1 +0.1}, {-4 + diff(#1, -4) *0.1});
1016 }
1017 \end{axis}
1018 \end{tikzpicture}
1019
1020 \begin{table*}[ht]
1021 \centering
1022 \begin{tabularx}{\textwidth}{|r|Y|Y|Y|}
1023 \hline
1024 \rowcolor{lblue}
1025 & \adjustbox{margin=0 1ex, valign=m}{\centering\(\dfrac{d^2 y}{dx^2} > 0\)} & \adjustbox{margin=0 1ex, valign=m}{\centering \(\dfrac{d^2y}{dx^2}<0\)} & \adjustbox{margin=0 1ex, valign=m}{\(\dfrac{d^2y}{dx^2}=0\) (inflection)} \\
1026 \hline
1027 \(\dfrac{dy}{dx}>0\) &
1028 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-3, xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x)}; \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
1029 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0.1, xmax=4, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(ln(x))}; \addplot[red] {x/1.5-0.56}; \end{axis}\end{tikzpicture} \\Rising (concave down)}&
1030 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1.5, xmax=1.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {x}; \end{axis}\end{tikzpicture} \\Rising inflection point}\\
1031 \hline
1032 \(\dfrac{dy}{dx}<0\) &
1033 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-.5, xmax=1, ymin=-.5, ymax=.5, scale=0.2, samples=100] \addplot[blue] {1/(x+1)-1}; \addplot[red] {-x}; \end{axis}\end{tikzpicture} \\Falling (concave up)}&
1034 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0, xmax=1.5, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(2-x*x)^(1/2)}; \addplot[red] {-x+2}; \end{axis}\end{tikzpicture} \\Falling (concave down)}&
1035 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=1.5, xmax=4.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {-x+3.1415}; \end{axis}\end{tikzpicture} \\Falling inflection point}\\
1036 \hline
1037 \(\dfrac{dy}{dx}=0\)&
1038 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Local minimum}& \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x)}; \addplot[red, very thick] {0}; \end{axis}\end{tikzpicture} \\Local maximum}&
1039 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \(\>\) \begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Stationary inflection point}\\
1040 \hline
1041 \end{tabularx}
1042 \end{table*}
1043 \begin{itemize}
1044 \item
1045 \(f^\prime (a) = 0, \> f^{\prime\prime}(a) > 0\) \\
1046 \textbf{local min} at \((a, f(a))\) (concave up)
1047 \item
1048 \(f^\prime (a) = 0, \> f^{\prime\prime} (a) < 0\) \\
1049 \textbf{local max} at \((a, f(a))\) (concave down)
1050 \item
1051 \(f^{\prime\prime}(a) = 0\) \\
1052 \textbf{point of inflection} at \((a, f(a))\)
1053 \item
1054 \(f^{\prime\prime}(a) = 0, \> f^\prime(a)=0\) \\
1055 stationary point of inflection at \((a, f(a)\)
1056 \end{itemize}
1057
1058 \subsection*{Implicit Differentiation}
1059
1060 \noindent Used for differentiating circles etc.
1061
1062 If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\),
1063 for all \(x\) and \(y\), then:
1064
1065 \[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
1066
1067 \begin{cas}
1068 Action \(\rightarrow\) Calculation \\
1069 \-\hspace{1em}\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}
1070 \end{cas}
1071
1072 \subsection*{Function of the dependent
1073 variable}
1074
1075 If \({\frac{dy}{dx}}=g(y)\), then
1076 \(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express
1077 \(e^c\) as \(A\).
1078
1079 \subsection*{Reciprocal derivatives}
1080
1081 \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
1082
1083 \subsection*{Differentiating \(x=f(y)\)}
1084 Find \(\dfrac{dx}{dy}\), then \(\dfrac{dy}{dx} = \dfrac{1}{\left(\dfrac{dx}{dy}\right)}\)
1085
1086 \subsection*{Parametric equations}
1087
1088
1089 \begin{align*}
1090 \dfrac{dy}{dt} &= \dfrac{dy}{dx} \cdot \dfrac{dx}{dt} \\
1091 \therefore \dfrac{dy}{dx} &= \dfrac{\left(\dfrac{dy}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ provided } \dfrac{dx}{dt} \ne 0 \\
1092 \dfrac{d^2y}{dx^2} &= \dfrac{\left(\dfrac{dy^\prime}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ where } y^\prime = \dfrac{dy}{dx}
1093 \end{align*}
1094
1095 \subsection*{Integration}
1096
1097 \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
1098
1099 \subsubsection*{Properties}
1100
1101 \begin{align*}
1102 \int^b_a f(x) \> dx &= \int^c_a f(x) \> dx + \int^b_c f(x) \> dx \\
1103 \int^a_a f(x) \> dx &= 0 \\
1104 \int^b_a k \cdot f(x) \> dx &= k \int^b_a f(x) \> dx \\
1105 \int^b_a f(x) \pm g(x) \> dx &= \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx \\
1106 \int^b_a f(x) \> dx &= - \int^a_b f(x) \> dx \\
1107 \end{align*}
1108
1109 \subsection*{Integration by substitution}
1110
1111 \[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
1112
1113 \begin{warning}
1114 \(\boldsymbol{f(u)}\) must be 1:1 \(\boldsymbol{\implies}\) one \(\boldsymbol{x}\) for each \(\boldsymbol{y}\)
1115 \end{warning}
1116 \begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\
1117 \text{let } u&=x+4\\
1118 \implies& {\frac{du}{dx}} = 1\\
1119 \implies& x = u - 4\\
1120 \text{then } &y=\int (2(u-4)+1)u^{\frac{1}{2}} \cdot du\\
1121 &\text{(solve as normal integral)}
1122 \end{align*}
1123
1124 \subsubsection*{Definite integrals by substitution}
1125
1126 For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and
1127 \(b\) for \(f(u) \cdot du\).
1128
1129 \subsubsection*{Trigonometric integration}
1130
1131 \[\sin^m x \cos^n x \cdot dx\]
1132
1133 \paragraph{\textbf{\(m\) is odd:}}
1134 \(m=2k+1\) where \(k \in \mathbb{Z}\)\\
1135 \(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\
1136 Substitute \(u=\cos x\)
1137
1138 \paragraph{\textbf{\(n\) is odd:}}
1139 \(n=2k+1\) where \(k \in \mathbb{Z}\)\\
1140 \(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\
1141 Substitute \(u=\sin x\)
1142
1143 \paragraph{\textbf{\(m\) and \(n\) are even:}}
1144 use identities...
1145
1146 \begin{itemize}
1147
1148 \item
1149 \(\sin^2x={1 \over 2}(1-\cos 2x)\)
1150 \item
1151 \(\cos^2x={1 \over 2}(1+\cos 2x)\)
1152 \item
1153 \(\sin 2x = 2 \sin x \cos x\)
1154 \end{itemize}
1155
1156 \subsection*{Separation of variables}
1157
1158 If \({\frac{dy}{dx}}=f(x)g(y)\), then:
1159
1160 \[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
1161
1162 \subsection*{Partial fractions}
1163
1164 To factorise \(f(x) = \frac{\delta}{\alpha \cdot \beta}\):
1165 \begin{align*}
1166 \dfrac{\delta}{\alpha \cdot \beta \cdot \gamma} &= \dfrac{A}{\alpha} + \dfrac{B}{\beta} + \dfrac{C}{\gamma} \tag{1} \\
1167 \text{Multiply by } & (\alpha \cdot \beta \cdot \gamma) \text{:} \\
1168 \delta &= \beta\gamma A + \alpha\gamma B +\alpha\beta C \tag{2} \\
1169 \text{Substitute } x &= \{\alpha, \beta, \gamma\} \text{ into (2) to find denominators}
1170 \end{align*}
1171
1172 \subsubsection*{Repeated linear factors}
1173
1174 \[ \dfrac{p(x)}{(x-a)^n} = \dfrac{A_1}{(x-a)} + \dfrac{A_2}{(x-a)^2} + \dots + \dfrac{A_n}{(x-a)^n} \]
1175
1176 \subsubsection*{Irreducible quadratic factors}
1177
1178 \[ \text{e.g. } \dfrac{3x-4}{(2x-3)(x^2+5)} = \dfrac{A}{2x-3} + \dfrac{Bx+C}{x^2+5} \]
1179
1180 \begin{cas}
1181 Action \(\rightarrow\) Transformation:\\
1182 \-\hspace{1em} \texttt{expand(..., x)}
1183
1184 To reverse, use \texttt{combine(...)}
1185 \end{cas}
1186
1187 \subsection*{Integrating \(\boldsymbol{\dfrac{dy}{dx} = g(y)}\)}
1188
1189 \[ \text{if } \dfrac{dy}{dx} = g(y), \text{ then } x = \int{\dfrac{1}{g(y)}} \> dy \]
1190
1191 \subsection*{Graphing integrals on CAS}
1192
1193 \begin{cas}
1194 \textbf{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\) \(\int\)\\
1195 For restrictions, \texttt{Define\ f(x)=...} then \texttt{f(x)\textbar{}x\textgreater{}...}
1196 \end{cas}
1197
1198 \subsection*{Solids of revolution}
1199
1200 Approximate as sum of infinitesimally-thick cylinders
1201
1202 \subsubsection*{Rotation about \(\boldsymbol{x}\)-axis}
1203
1204 \[ V = \pi\int^{x=b}_{x=a} f(x)^2 \> dx \]
1205
1206 \subsubsection*{Rotation about \(\boldsymbol{y}\)-axis}
1207
1208 \begin{align*}
1209 V &= \pi \int^{y=b}_{y=a} x^2 \> dy \\
1210 &= 2\pi \int^{x=b}_{x=a} x|f(x)| \> dx
1211 \end{align*}
1212
1213 \subsubsection*{Rotating the area between two graphs}
1214
1215 \[V = \pi \int^b_a \left( f(x)^2 - g(x)^2 \right) \> dx\]
1216 \hfill where \(f(x) > g(x)\)
1217
1218 \subsection*{Length of a curve}
1219
1220 For length of \(f(x)\) from \(x=a \rightarrow x=b\):
1221 \begin{align*}
1222 &\text{Cartesian} \> & L &= \int^b_a \sqrt{1 + \left(\dfrac{dy}{dx}\right)^2} \> dx \\
1223 &\text{Parametric} \> & L & = \int^b_a \sqrt{\left(\dfrac{dx}{dt}\right)^2 + \left(\dfrac{dy}{dt}\right)^2} \> dt
1224 \end{align*}
1225
1226 \begin{cas}
1227 \begin{enumerate}[label=\alph*), leftmargin=5mm]
1228 \item Evaluate formula
1229 \item Interactive \(\rightarrow\) Calculation \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
1230 \end{enumerate}
1231 \end{cas}
1232
1233 \subsection*{Applications of antidifferentiation}
1234
1235 \begin{itemize}
1236
1237 \item
1238 \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
1239 stationary points on \(y=F(x)\)
1240 \item
1241 nature of stationary points is determined by sign of \(y=f(x)\) on
1242 either side of its \(x\)-intercepts
1243 \item
1244 if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
1245 \(n+1\)
1246 \end{itemize}
1247
1248 To find stationary points of a function, substitute \(x\) value of given
1249 point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
1250 original function.
1251
1252 \subsection*{Rates}
1253
1254 \subsubsection*{Gradient at a point on parametric curve}
1255
1256 \[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0 \text{ (chain rule)}\]
1257
1258 \[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\]
1259
1260 \subsection*{Rational functions}
1261
1262 \[f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\]
1263
1264 \subsection*{Euler's method}
1265
1266 \[\dfrac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
1267
1268 \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
1269
1270 \begin{theorembox}{}
1271 If \(\dfrac{dy}{dx} = g(x)\) with \(x_0 = a\) and \(y_0 = b\), then:
1272 \[\begin{cases}
1273 x_{n+1} = x_n + h \\
1274 y_{n+1} = y_n + hg(x_n)
1275 \end{cases}\]
1276 \end{theorembox}
1277
1278 \[
1279 \dfrac{d^2y}{dx^2}
1280 \begin{cases}
1281 > 0 \implies \text{ underestimate (concave up)} \\
1282 < 0 \implies \text{ overestimate (concave down)}
1283 \end{cases}
1284 \]
1285
1286 \begin{center}\begin{tikzpicture}
1287 \begin{axis}[xmin=0, xmax=1.6, ticks=none, enlargelimits=true, samples=100]
1288 \addplot[blue, domain=-0.25:1.5, postaction={decorate,decoration={text along path, text align={align=center, left indent=3cm}, text={|\sffamily|solution curve}}}] {e^(x-3/2)+1/4};
1289 \addplot[red] {(x+1/2)*e^(-1)+1/4} (1.7,1.0593) node [above, black] {\(\ell\)};
1290 \addplot[mark=*, black] coordinates {(0.5,0.6179)} node[above left]{\((x_0, y_0)\)};
1291 \addplot[mark=*, orange] coordinates {(1.4,1.1548)} node[left]{\color{black} \sffamily correct solution};
1292 \addplot[mark=*, black] coordinates {(1.4,0.94897)} node[above right] {\((x_1,y_1)\)};
1293 \draw [gray, dashed] (0.5,0) -- (0.5,0.6179) -- (1.6,0.6179);
1294 \draw [gray, dashed] (1.4,0) -- (1.4, 1.1548);
1295 \draw [<->] (0.5,0.48) -- (1.4,0.48) node[midway, fill=white] {\(h\)};
1296 \draw [gray, dashed] (1.4,0.94897) -- (1.6,0.94897);
1297 \draw [<->] (1.5,0.94897) -- (1.5,0.6179) node[midway, rotate=90, below] {\(hg(x_0)\)};
1298 \end{axis}
1299 \end{tikzpicture}\end{center}
1300
1301 \begin{cas}
1302 Menu \(\rightarrow\) Sequence \(\rightarrow\) Recursive
1303
1304 \textbf{To generate \(\boldsymbol{x}\)-values:}
1305 \begin{itemize}
1306 \item Enter \(a_{n+1}=a_n + h\) where \(h\) is the step size \\
1307 (input \(a_n\) from menu bar)
1308 \item In \(a_0\), set the initial value \(x_0\) as a constant
1309 \end{itemize}
1310
1311 \textbf{To generate \(\boldsymbol{y}\)-values:}
1312 \begin{itemize}
1313 \item In \(b_{n+1}\), enter \(\dfrac{dy}{dx}\), replacing \(x\) with \(a_n\)
1314 \item Set \(b_0 = y(x_0)\) as a constant
1315 \end{itemize}
1316
1317 To view table of values, tap table icon (top left) \\
1318 To compare approximations with actual values, enter in \(c_{n+1} = a_{n+1} - f(a_{n+1})\) where \(f(x) = \int \dfrac{dy}{dx} \> dx\)
1319
1320 \end{cas}
1321
1322 \subsection*{Fundamental theorem of calculus}
1323
1324 If \(f\) is continuous on \([a, b]\), then
1325
1326 \[\int^b_a f(x) \> dx = F(b) - F(a)\]
1327 \hfill where \(F = \int f \> dx\)
1328
1329 \subsection*{Differential equations}
1330
1331 \noindent\textbf{Order} - highest power inside derivative\\
1332 \textbf{Degree} - highest power of highest derivative\\
1333 e.g. \({\left(\dfrac{dy^2}{d^2} x\right)}^3\) \qquad order 2, degree 3
1334
1335 \begin{warning}
1336 To verify solutions, find \(\frac{dy}{dx}\) from \(y\) and substitute into original
1337 \end{warning}
1338
1339 \vspace*{1cm}
1340 \hspace*{-1cm}
1341
1342 { \tabulinesep=1.2mm
1343 \begin{tabu}{|c|c|}
1344
1345 \hline
1346 \taburowcolors 2{gray..white}
1347 \textbf{DE} & \textbf{Method} \\
1348 \hline
1349
1350 \tabureset
1351 \(\dfrac{dy}{dx} = f(x)\)
1352 &
1353 {\(\begin{aligned}
1354 y &= \int f(x) \> dx \\
1355 &= F(x) + c \quad \text{where } F^\prime(x) = f(x)
1356 \end{aligned}\)} \\
1357
1358 \hline
1359
1360 \(\dfrac{d^2y}{dx^2} = f(x)\)
1361 &
1362 {\(\begin{aligned}
1363 \dfrac{dy}{dx} &= \int f(x) \> dx \\
1364 &= F(x) + c \quad \text{where } F^\prime(x) = f(x) \\
1365 \therefore y &= \iint f(x) \> dx = \int \left( F(x) + c \right) \> dx \\
1366 &= G(x) + cx + d \\
1367 & \text{where } G^\prime(x) = F(x)
1368 \end{aligned}\)} \\
1369
1370 \hline
1371
1372 \(\dfrac{dy}{dx} = g(y)\)
1373 &
1374 {\(\begin{aligned}
1375 \dfrac{dx}{dy} &= \dfrac{1}{g(y)} \\
1376 \therefore x &= \int \dfrac{1}{g(y)} \> dy \\
1377 &= F(y) + c \\
1378 & \text{where } F^\prime(y) = \dfrac{1}{g(y)}
1379 \end{aligned}\)} \\
1380
1381 \hline
1382
1383 \(\dfrac{dy}{dx} = f(x) g(y)\)
1384 &
1385 {\(\begin{aligned}
1386 f(x) &= \dfrac{1}{g(y)} \cdot \dfrac{dy}{dx} \\
1387 \int f(x) \> dx &= \int \dfrac{1}{g(y)} \> dy
1388 \end{aligned}\)} \\
1389
1390 \hline
1391 \end{tabu}}
1392
1393 \subsubsection*{Mixing problems}
1394
1395 \[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\]
1396
1397 \include{calculus-rules}
1398
1399 \section{Kinematics \& Mechanics}
1400
1401 \subsection*{Constant acceleration}
1402
1403 \begin{itemize}
1404 \item \textbf{Position} - relative to origin
1405 \item \textbf{Displacement} - relative to starting point
1406 \end{itemize}
1407
1408 \subsubsection*{Velocity-time graphs}
1409
1410 \begin{description}[nosep, labelindent=0.5cm, leftmargin=0.5\columnwidth]
1411 \item[Displacement:] \textit{signed} area
1412 \item[Distance travelled:] \textit{total} area
1413 \end{description}
1414
1415 \[ \text{acceleration} = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right) \]
1416
1417 \begin{center}
1418 \renewcommand{\arraystretch}{1}
1419 \begin{tabular}{ l r }
1420 \hline & no \\ \hline
1421 \(v=u+at\) & \(x\) \\
1422 \(v^2 = u^2+2as\) & \(t\) \\
1423 \(s = \frac{1}{2} (v+u)t\) & \(a\) \\
1424 \(s = ut + \frac{1}{2} at^2\) & \(v\) \\
1425 \(s = vt- \frac{1}{2} at^2\) & \(u\) \\ \hline
1426 \end{tabular}
1427 \end{center}
1428
1429 \[ v_{\text{avg}} = \frac{\Delta\text{position}}{\Delta t} \]
1430 \begin{align*}
1431 \text{speed} &= |{\text{velocity}}| \\
1432 &= \sqrt{v_x^2 + v_y^2 + v_z^2}
1433 \end{align*}
1434
1435 \noindent \textbf{Distance travelled between \(t=a \rightarrow t=b\):}
1436 \begin{align*}
1437 &= \int^{b}_{a}{\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}} \> dt \tag{2D} \\
1438 &= \int^{t=b}_{t=a}{\dfrac{dx}{dt}} \> dt \tag{linear}
1439 \end{align*}
1440
1441 \noindent \textbf{Shortest distance between \(\boldsymbol{r}(t_0)\) and \(\boldsymbol{r}(t_1)\):}
1442 \[ = |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)| \]
1443
1444 \subsection*{Vector functions}
1445
1446 \[ \boldsymbol{r}(t) = x \boldsymbol{i} + y \boldsymbol{j} + z \boldsymbol{k} \]
1447
1448 \begin{itemize}
1449 \item If \(\boldsymbol{r}(t) \equiv\) position with time, then the graph of endpoints of \(\boldsymbol{r}(t) \equiv\) Cartesian path
1450 \item Domain of \(\boldsymbol{r}(t)\) is the range of \(x(t)\)
1451 \item Range of \(\boldsymbol{r}(t)\) is the range of \(y(t)\)
1452 \end{itemize}
1453
1454 \subsection*{Vector calculus}
1455
1456 \subsubsection*{Derivative}
1457
1458 Let \(\boldsymbol{r}(t)=x(t)\boldsymbol{i} + y(t)\boldsymbol(j)\). If both \(x(t)\) and \(y(t)\) are differentiable, then:
1459 \[ \boldsymbol{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j} \]
1460
1461 \subfile{dynamics}
1462 \subfile{statistics}
1463 \end{multicols}
1464\end{document}