1---
2geometry: margin=2cm
3<!-- columns: 2 -->
4graphics: yes
5tables: yes
6author: Andrew Lorimer
7---
8
9# Antidifferentiation
10
11If $F'(x)=f(x)$, then $\int f(x) \cdot dx = F(x) + c$
12
13$$\int x^n \cdot dx = {x^{n+1} \over {n+1}} + c, \quad n \in \mathbb{N} \cup \{0\}$$
14
15Rules:
16
17$\int [f(x) \pm g(x)] \cdot dx = \int f(x) \cdot dx \pm \int g(x) \cdot dx$
18$\int kf(x) \cdot dx = k \int f(x) \cdot dx$, where $k \in \mathbb{R}$
19
20## Applications of differentiation to kinematics
21
22Kinematics - straight line motion of a particle
23
24Instantaneous velocity - dx/dt
25
26## Newton's method
27
28$$x_{n+1}=x_n - {f(x_n) \over f^\prime(x_n)}$$
29
30or
31
32$$x_1=x_0 - {f(x_0) \over f^\prime(x_0)}$$