1\documentclass[standalone]{article} 2\usepackage{lmodern} 3\usepackage{amssymb,amsmath} 4\usepackage{ifxetex,ifluatex} 5\ifnum0\ifxetex1\fi\ifluatex1\fi=0% if pdftex 6\usepackage[T1]{fontenc} 7\usepackage[utf8]{inputenc} 8\usepackage{textcomp}% provides euro and other symbols 9\else% if luatex or xelatex 10\usepackage{unicode-math} 11\defaultfontfeatures{Scale=MatchLowercase} 12\defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1} 13\fi 14% use upquote if available, for straight quotes in verbatim environments 15\IfFileExists{upquote.sty}{\usepackage{upquote}}{} 16\IfFileExists{microtype.sty}{% use microtype if available 17\usepackage[]{microtype} 18\UseMicrotypeSet[protrusion]{basicmath}% disable protrusion for tt fonts 19}{} 20\makeatletter 21\@ifundefined{KOMAClassName}{% if non-KOMA class 22\IfFileExists{parskip.sty}{% 23\usepackage{parskip} 24}{% else 25\setlength{\parindent}{0pt} 26\setlength{\parskip}{6pt plus 2pt minus 1pt}} 27}{% if KOMA class 28\KOMAoptions{parskip=half}} 29\makeatother 30\usepackage{xcolor} 31\urlstyle{same}% don't use monospace font for urls 32\usepackage{fullpage} 33\usepackage{longtable,booktabs} 34% Allow footnotes in longtable head/foot 35\IfFileExists{footnotehyper.sty}{\usepackage{footnotehyper}}{\usepackage{footnote}} 36\makesavenoteenv{longtable} 37\usepackage{graphicx,grffile} 38\makeatletter 39\makeatother 40 41% set default figure placement to htbp 42\makeatletter 43\def\fps@figure{htbp} 44\makeatother 45 46 47\author{Andrew Lorimer} 48\date{} 49 50\begin{document} 51 52\section{Transformations} 53 54\textbf{Order of operations:} DRT - Dilations, Reflections, Translations 55 56\subsection{Transforming x\^{}n to a(x-h)\^{}n+K} 57 58\begin{itemize} 59\tightlist 60\item 61 \(|a|\) is the dilation factor of \(|a|\) units parallel to \(y\)-axis 62 or from \(x\)-axis 63\item 64 if \(a<0\), graph is reflected over \(x\)-axis 65\item 66 \(k\) - translation of \(k\) units parallel to \(y\)-axis or from 67 \(x\)-axis 68\item 69 \(h\) - translation of \(h\) units parallel to \(x\)-axis or from 70 \(y\)-axis 71\item 72 for \((ax)^n\), dilation factor is \(1\over a\) parallel to 73 \(x\)-axis or from \(y\)-axis 74\item 75 when \(0 < |a| < 1\), graph becomes closer to axis 76\end{itemize} 77 78\subsection{Translations} 79 80For \(y = f(x)\), these processes are equivalent: 81 82\begin{itemize} 83\tightlist 84\item 85 applying the translation \((x, y) \rightarrow (x + h, y + k)\) to the 86 graph of \(y = f(x)\) 87\item 88 replacing \(x\) with \(x - h\) and \(y\) with \(y - k\) to obtain \(y - k = f (x - h)\) 89\end{itemize} 90 91\subsection{Dilations} 92 93For the graph of \(y = f(x)\), there are two pairs of equivalent 94processes: 95 96\begin{enumerate} 97\def\labelenumi{\arabic{enumi}.} 98\item 99\begin{itemize} 100\tightlist 101\item 102 Dilating from \(x\)-axis: \((x, y) \rightarrow (x, by)\) 103\item 104 Replacing \(y\) with \(y \over b\) to obtain \(y = b f(x)\) 105\end{itemize} 106\item 107\begin{itemize} 108\tightlist 109\item 110 Dilating from \(y\)-axis: \((x, y) \rightarrow (ax, y)\) 111\item 112 Replacing \(x\) with \(x \over a\) to obtain \(y = f({x \over a})\) 113\end{itemize} 114\end{enumerate} 115 116For graph of \(y={1\over x}\), horizontal \& vertical dilations are 117equivalent (symmetrical). If \(y={a \over x}\), graph is contracted 118rather than dilated. 119 120\subsection{Transforming \(f(x)\) to \(y=Af[n(x+c)]+b\)} 121 122Applies to exponential, log, trig, power, polynomial functions.\\ 123Functions must be written in form \(y=Af[n(x+c)] + b\) 124 125\(A\) - dilation by factor \(A\) from \(x\)-axis (if \(A<0\), reflection 126across \(y\)-axis)\\ 127\(n\) - dilation by factor \(1\over n\) from \(y\)-axis (if \(n<0\), 128reflection across \(x\)-axis)\\ 129\(c\) - translation from \(y\)-axis (\(x\)-shift)\\ 130\(b\) - translation from \(x\)-axis (\(y\)-shift) 131 132\subsection{Power functions} 133 134\textbf{Strictly increasing:} \(f(x_2) > f(x_1)\) where \(x_2 > x_1\) 135(including \(x=0\)) 136 137\subsubsection{Odd and even functions} 138 139Even when \(f(x) = -f(x)\)\\ 140Odd when \(-f(x) = f(-x)\) 141 142Function is even if it can be reflected across \(y\)-axis 143\(\implies f(x)=f(-x)\)\\ 144Function \(x^{\pm{p \over q}}\) is odd if \(q\) is odd 145 146\newcolumntype{C}{>{\centering\arraybackslash} m{3cm} } 147\begin{center} 148\begin{tabular}{m{1.2cm}|C|C} 149 & $n$ is even & $n$ is odd \\ 150\hline 151\parbox[c]{1.2cm}{$x^n,\\ n \in \mathbb{Z}^+$} & {\includegraphics[height=3cm]{graphics/parabola.png}} & {\includegraphics[height=3cm]{graphics/cubic.png}}\\ 152\parbox[c]{1.2cm}{$x^n$,\\ $n \in \mathbb{Z}^-$} & {\includegraphics[height=3cm]{graphics/truncus.png}} & {\includegraphics[height=3cm]{graphics/hyperbola.png}}\\ 153\parbox[c]{1.2cm}{$x^{1\over n},\\ n \in \mathbb{Z}^+$} & {\includegraphics[height=3cm]{graphics/square-root-graph.png}} & {\includegraphics[height=3cm]{graphics/cube-root-graph.png}}\\ 154\end{tabular} 155\end{center} 156\subsubsection{\(x^n\) where \(n \in \mathbb{Z}^+\)} 157 158\subsubsection{\(x^{1\over n}\) where \(n \in \mathbb{Z}^+\)} 159 160\begin{longtable}[]{@{}ll@{}} 161\toprule 162\(n\) is even: & \(n\) is odd:\tabularnewline 163\midrule 164\endhead 165\includegraphics[width=0.2\textwidth,height=\textheight]{graphics/square-root-graph.png} 166& 167\includegraphics[width=0.2\textwidth,height=\textheight]{graphics/cube-root-graph.png}\tabularnewline 168\bottomrule 169\end{longtable} 170 171\subsubsection{\(x^{-1\over n}\) where \(n \in \mathbb{Z}^+\)} 172 173Mostly only on CAS. 174 175We can write 176\(x^{-1\over n} = {1\over{x^{1\over n}}} = {1\over ^n \sqrt{x}}\)n.\\ 177Domain is: 178\(\begin{cases}\mathbb{R}\setminus \{0\}\hspace{0.5em}\text{ if }n\text{ is odd} \\ \mathbb{R}^+ \hspace{2.6em}\text{if }n\text{ is even}\end{cases}\) 179 180If \(n\) is odd, it is an odd function. 181 182\subsubsection{\(x^{p \over q}\) where \(p, q \in \mathbb{Z}^+\)} 183 184\[x^{p \over q} = \sqrt[q]{x^p}\] 185 186\begin{itemize} 187\tightlist 188\item 189 if \(p > q\), the shape of \(x^p\) is dominant 190\item 191 if \(p < q\), the shape of \(x^{1\over q}\) is dominant 192\item 193 points \((0, 0)\) and \((1, 1)\) will always lie on graph 194\item 195 Domain is: 196 \(\begin{cases}\mathbb{R}\hspace{4em}\text{ if }q\text{ is odd} \\ \mathbb{R}^+ \cup \{0\}\hspace{1em}\text{if }q\text{ is even}\end{cases}\) 197\end{itemize} 198 199\subsection{Combinations of functions (piecewise/hybrid)} 200 201\[\text{e.g.}\quad f(x)=\begin{cases} ^3\sqrt{x}, \hspace{2em} x \le0 \\ 2, \hspace{3.4em}0 < x < 2 \\ x, \hspace{3.4em} x \ge2\end{cases}\] 202 203Open circle - point included\\ 204Closed circle - point not included 205 206\subsubsection{Sum, difference, product of functions} 207 208\begin{longtable}[]{@{}lll@{}} 209\toprule 210\endhead 211sum & \(f+g\) & domain 212\(= \text{dom}(f) \cap \text{dom}(g)\)\tabularnewline 213difference & \(f-g\) or \(g-f\) & domain 214\(=\text{dom}(f) \cap \text{dom}(g)\)\tabularnewline 215product & \(f \times g\) & domain 216\(=\text{dom}(f) \cap \text{dom}(g)\)\tabularnewline 217\bottomrule 218\end{longtable} 219 220Addition of linear piecewise graphs - add \(y\)-values at key points 221 222Product functions: 223 224\begin{itemize} 225\tightlist 226\item 227 product will equal 0 if one of the functions is equal to 0 228\item 229 turning point on one function does not equate to turning point on 230 product 231\end{itemize} 232 233\subsection{Matrix transformations} 234 235Find new point \((x^\prime, y^\prime)\). Substitute these into original 236equation to find image with original variables \((x, y)\). 237 238\subsection{Composite functions} 239 240\((f \circ g)(x)\) is defined iff 241\(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\) 242 243\end{document}