physics / final.texon commit physics cheatsheet - diffraction, huygen etc (54edf2c)
   1\documentclass[a4paper]{article}
   2\usepackage{multicol}
   3\usepackage[cm]{fullpage}
   4\usepackage{amsmath}
   5\usepackage{amssymb}
   6\setlength{\parindent}{0cm}
   7\usepackage[nodisplayskipstretch]{setspace}
   8\setstretch{1.3}
   9\usepackage{graphicx}
  10\usepackage{wrapfig}
  11\usepackage{enumitem}
  12\setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt,leftmargin=5pt}
  13
  14
  15\begin{document}
  16
  17\pagenumbering{gobble}
  18\begin{multicols}{3}
  19
  20% +++++++++++++++++++++++
  21
  22{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
  23
  24% +++++++++++++++++++++++
  25\section{Motion}
  26
  27  $\operatorname{m/s} \, \times \, 3.6 = \operatorname{km/h}$
  28
  29  \subsection*{Inclined planes}
  30    $F = m g \sin\theta - F_{\text{frict}} = m a$
  31
  32% -----------------------
  33  \subsection*{Banked tracks}
  34
  35    \includegraphics[height=4cm]{graphics/banked-track.png}
  36
  37    $\theta = \tan^{-1} {{v^2} \over rg}$
  38
  39    $\Sigma F$ always acts towards centre, but not necessarily horizontally
  40
  41    $\Sigma F = F_{\operatorname{norm}} + F_{\operatorname{g}}={{mv^2} \over r} = mg \tan \theta$
  42
  43    Design speed $v = \sqrt{gr\tan\theta}$
  44
  45    $n\sin \theta = {mv^2 \div r}, \quad n\cos \theta = mg$
  46
  47% -----------------------
  48  \subsection*{Work and energy}
  49
  50    $W=Fx=\Delta \Sigma E$ (work)
  51
  52    $E_K = {1 \over 2}mv^2$ (kinetic)
  53
  54    $E_G = mgh$ (potential)
  55
  56    $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
  57
  58% -----------------------
  59  \subsection*{Horizontal circular motion}
  60
  61    $v = {{2 \pi r} \over T}$
  62
  63    $f = {1 \over T}, \quad T = {1 \over f}$
  64
  65    $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
  66
  67    $\Sigma F, a$ towards centre, $v$ tangential
  68
  69    $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
  70
  71    \includegraphics[height=4cm]{graphics/circ-forces.png}
  72
  73% -----------------------
  74  \subsection*{Vertical circular motion}
  75
  76    $T =$ tension, e.g. circular pendulum
  77
  78    $T+mg = {{mv^2}\over r}$ at highest point
  79
  80    $T-mg = {{mv^2} \over r}$ at lowest point
  81
  82% -----------------------
  83  \subsection*{Projectile motion}
  84    \begin{itemize}
  85      \item{horizontal component of velocity is constant if no air resistance}
  86      \item{vertical component affected by gravity: $a_y = -g$}
  87    \end{itemize}
  88
  89    \begin{align*}
  90      v=\sqrt{v^2_x + v^2_y} \tag{vectors} \\
  91      h={{u^2\sin \theta ^2}\over 2g} \tag{max height}\\
  92      x=ut\cos\theta \tag{$\Delta x$ at $t$} \\
  93      y=ut \sin \theta-{1 \over 2}gt^2 \tag{height at $t$} \\
  94      t={{2u\sin\theta}\over g} \tag{time of flight}\\
  95      d={v^2 \over g}\sin \theta \tag{horiz. range} \\
  96    \end{align*}
  97
  98    \includegraphics[height=3.2cm]{graphics/projectile-motion.png}
  99
 100% -----------------------
 101  \subsection*{Pulley-mass system}
 102
 103    $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
 104
 105    $\Sigma F = m_2g-m_1g=\Sigma ma$ (solve)
 106
 107% -----------------------
 108  \subsection*{Graphs}
 109    \begin{itemize}
 110      \item{Force-time: $A=\Delta \rho$}
 111      \item{Force-disp: $A=W$}
 112      \item{Force-ext: $m=k,\quad A=E_{spr}$}
 113      \item{Force-dist: $A=\Delta \operatorname{gpe}$}
 114      \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
 115    \end{itemize}
 116
 117% -----------------------
 118  \subsection*{Hooke's law}
 119
 120  $F=-kx$
 121
 122  $\text{elastic potential energy} = {1 \over 2}kx^2$
 123
 124% -----------------------
 125  \subsection*{Motion equations}
 126
 127    \begin{tabular}{ l r }
 128      & no \\
 129      $v=u+at$ & $x$ \\
 130      $x = {1 \over 2}(v+u)t$ & $a$ \\
 131      $x=ut+{1 \over 2}at^2$ & $v$ \\
 132      $x=vt-{1 \over 2}at^2$ & $u$ \\
 133      $v^2=u^2+2ax$ & $t$ \\
 134    \end{tabular}
 135
 136% -----------------------
 137  \subsection*{Momentum}
 138
 139    $\rho = mv$
 140
 141    $\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
 142
 143    $\Sigma mv_0=\Sigma mv_1$ (conservation)
 144
 145    $\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
 146
 147    $n$-body collisions: $\rho$ of each body is independent
 148
 149% ++++++++++++++++++++++
 150\section{Relativity}
 151
 152  \subsection*{Postulates}
 153    1. Laws of physics are constant in all intertial reference frames
 154
 155    2. Speed of light $c$ is the same to all observers (Michelson-Morley)
 156
 157    $\therefore \, t$ must dilate as speed changes
 158
 159    {\bf Inertial reference frame} $a=0$
 160
 161    {\bf Proper time $t_0$ $\vert$ length $l_0$} measured by observer in same frame as events
 162
 163% -----------------------
 164  \subsection*{Lorentz factor}
 165
 166    $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
 167
 168    $t=t_0 \gamma$ ($t$ longer in moving frame)
 169
 170    $l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
 171
 172    $m=m_0 \gamma$ (mass dilation)
 173
 174    $$v = c\sqrt{1-{1 \over \gamma^2}}$$
 175
 176% -----------------------
 177  \subsection*{Energy and work}
 178
 179    $E_0 = mc^2$ (rest)
 180
 181    $E_{total} = E_K + E_{rest} = \gamma mc^2$
 182
 183    $E_K = (\gamma 1)mc^2$
 184
 185    $W = \Delta E = \Delta mc^2$
 186
 187% -----------------------
 188  \subsection*{Relativistic momentum}
 189
 190    $$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
 191
 192    $\rho \rightarrow \infty$ as $v \rightarrow c$
 193
 194    $v=c$ is impossible (requires $E=\infty$)
 195
 196    $$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
 197
 198% -----------------------
 199  \subsection*{High-altitude muons}
 200    \begin{itemize}
 201      {\item $t$ dilation more muons reach Earth than expected}
 202      {\item normal half-life $2.2 \operatorname{\mu s}$ in stationary frame, $> 2.2 \operatorname{\mu s}$ observed from Earth}
 203    \end{itemize}
 204
 205% +++++++++++++++++++++++
 206\section{Fields and power}
 207
 208  \subsection*{Non-contact forces}
 209    \begin{itemize}
 210      {\item electric fields (dipoles \& monopoles)}
 211      {\item magnetic fields (dipoles only)}
 212      {\item gravitational fields (monopoles only)}
 213    \end{itemize}
 214
 215    \vspace{1em}
 216
 217    \begin{itemize}
 218      \item monopoles: lines towards centre
 219      \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (or perpendicular to wire)
 220      \item closer field lines means larger force
 221      \item dot: out of page, cross: into page
 222      \item +ve corresponds to N pole
 223    \end{itemize}
 224
 225    \includegraphics[height=2cm]{graphics/field-lines.png}
 226    % \includegraphics[height=2cm]{graphics/bar-magnet-fields-rotated.png}
 227
 228% -----------------------
 229  \subsection*{Gravity}
 230
 231    \[F_g=G{{m_1m_2}\over r^2}\tag{grav. force}\]
 232    \[g={F_g \over m_2}=G{m_{1} \over r^2}\tag{field of $m_1$}\]
 233    \[E_g = mg \Delta h\tag{gpe}\]
 234    \[W = \Delta E_g = Fx\tag{work}\]
 235    \[w=m(g-a) \tag{app. weight}\]
 236
 237    % \columnbreak
 238
 239% -----------------------
 240  \subsection*{Satellites}
 241
 242    \[v=\sqrt{Gm_{\operatorname{planet}} \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
 243
 244    \[T={\sqrt{4 \pi^2 r^2} \over {GM}}\tag{period}\]
 245
 246    \[\sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
 247
 248% -----------------------
 249  \subsection*{Magnetic fields}
 250    \begin{itemize}
 251      \item field strength $B$ measured in tesla
 252      \item magnetic flux $\Phi$ measured in weber
 253      \item charge $q$ measured in coulombs
 254      \item emf $\mathcal{E}$ measured in volts
 255    \end{itemize}
 256
 257    % \[{E_1 \over E_2}={r_1 \over r_2}^2\]
 258
 259    \[F=qvB\tag{$F$ on moving $q$}\]
 260    \[F=IlB\tag{$F$ of $B$ on $I$}\]
 261    \[r={mv \over qB} \tag{radius of $q$ in $B$}\]
 262
 263    if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
 264
 265% -----------------------
 266  \subsection*{Electric fields}
 267
 268    \[F=qE \tag{$E$ = strength} \]
 269    \[F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \]
 270    \[E=k{q \over r^2} \tag{field on point charge} \]
 271    \[E={V \over d} \tag{field between plates}\]
 272    \[F=BInl \tag{force on a coil} \]
 273    \[\Phi = B_{\perp}A\tag{magnetic flux} \]
 274    \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \]
 275    \[{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \]
 276
 277    \textbf{Lenz's law:}  $I_{\operatorname{emf}}$ opposes $\Delta \Phi$
 278
 279    \textbf{Eddy currents:} counter movement within a field
 280
 281    \textbf{Right hand grip:} thumb points to $I$ (single wire) or N (solenoid / coil)
 282
 283    \includegraphics[height=2cm]{graphics/slap-2.jpeg}
 284    \includegraphics[height=3cm]{graphics/grip.png}
 285
 286    % \textbf{Right hand slap:} $B \perp I \perp F$ \\
 287    % ($I$ = thumb)
 288
 289    \textbf{Flux-time graphs:} $m \times n = \operatorname{emf}$
 290
 291    \textbf{Transformers:} core strengthens \& focuses $\Phi$
 292
 293% -----------------------
 294  \subsection*{Particle acceleration}
 295
 296    $1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
 297
 298    e- accelerated with $x$ V is given $x$ eV
 299
 300    \[W={1\over2}mv^2=qV \tag{field or points}\]
 301    \[v=\sqrt{{2qV} \over {m}}\tag{velocity of particle}\]
 302
 303
 304% -----------------------
 305  \subsection*{Power transmission}
 306
 307    % \begin{align*}
 308      \[V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \]
 309      \[P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \]
 310      \[V_{\operatorname{loss}}=IR \]
 311    % \end{align*}
 312
 313    Use high-$V$ side for correct $|V_{drop}|$
 314
 315    \begin{itemize}
 316      {\item Parallel $V$ is constant}
 317      {\item Series $V$ shared within branch}
 318    \end{itemize}
 319
 320    \includegraphics[height=4cm]{graphics/ac-generator.png}
 321
 322% -----------------------
 323  \subsection*{Motors}
 324% \begin{wrapfigure}{r}{-0.1\textwidth}
 325
 326    \includegraphics[height=4cm]{graphics/dc-motor-2.png}
 327      \includegraphics[height=3cm]{graphics/ac-motor.png} \\
 328% \end{wrapfigure}
 329    \textbf{DC:} split ring (two halves)
 330
 331% \begin{wrapfigure}{r}{0.3\textwidth}
 332
 333% \end{wrapfigure}
 334    \textbf{AC:} slip ring (separate rings with constant contact)
 335
 336% \pagebreak
 337
 338% +++++++++++++++++++++++
 339\section{Waves}
 340
 341  \textbf{nodes:} fixed on graph \\
 342  \textbf{amplitude:} max disp. from $y=0$ \\
 343  \textbf{rarefactions} and \textbf{compressions} \\
 344  \textbf{mechanical:} transfer of energy without net transfer of matter \\
 345
 346
 347  \textbf{Longitudinal (motion $||$ wave)}
 348  \includegraphics[width=6cm]{graphics/longitudinal-waves.png}
 349
 350  \textbf{Transverse (motion $\perp$ wave)}
 351  \includegraphics[width=6cm]{graphics/transverse-waves.png}
 352
 353  % -----------------------
 354  $T={1 \over f}\quad$(period: time for one cycle)
 355  $v=f \lambda \quad$(speed: displacement / sec)
 356
 357  % -----------------------
 358  \subsection*{Doppler effect}
 359  When $P_1$ approaches $P_2$, each wave $w_n$ has slightly less distance to travel than $w_{n-1}$. $w_n$ reaches observer sooner than $w_{n-1}$ ("apparent" $\lambda$).
 360
 361  % -----------------------
 362  \subsection*{Interference}
 363
 364
 365
 366  \textbf{Standing waves} - constructive int. at resonant freq
 367
 368  \subsection*{Harmonics}
 369
 370
 371  \(\lambda = {{al} \div n}\quad\) (\(\lambda\) for \(n^{th}\) harmonic)\\
 372  \(f = {nv \div al}\quad\) (\(f\) for \(n_{th}\) harmonic at length
 373  \(l\) and speed \(v\)) \\
 374  where \(a=2\) for antinodes at both ends, \(a=4\) for antinodes at one end
 375
 376  % -----------------------
 377  \subsection*{Polarisation}
 378  \includegraphics[height=3.5cm]{graphics/polarisation.png}
 379
 380  % -----------------------
 381  \subsection*{Diffraction}
 382  \includegraphics[width=6cm]{graphics/diffraction.jpg}
 383  \includegraphics[width=6cm]{graphics/diffraction-2.png}
 384  \begin{itemize}
 385    \item \(pd = |S_1P-S_2P|\) for \(p\) on screen
 386    \item Constructive: \(pd = n\lambda, n \in \mathbb{Z}\)
 387    \item Destructive: \(pd = (n-{1 \over 2})\lambda, n \in \mathbb{Z}\)
 388    \item Fringe separation: \(\Delta x = {{\lambda l }\over d}\) where \\
 389    \(\Delta x\) = fringe spacing \\
 390    \(l\) = distance from slits to screen\\
 391    \(d\) = slit separation (\(=S_1-S_2\))
 392    \item significant diffraction when ${\lambda \over \Delta x} \ge 1$
 393  \end{itemize}
 394
 395
 396
 397  % -----------------------
 398  \subsection*{Refraction}
 399  \includegraphics[height=3.5cm]{graphics/refraction.png}
 400
 401  When a medium changes character, energy is \emph{reflected}, \emph{absorbed}, and \emph{transmitted}
 402
 403  angle of incidence $\theta_i =$ angle of reflection $\theta_r$
 404
 405  Critical angle $\theta_c = \sin^-1{n_2 \over n_1}$
 406
 407  Snell's law $n_1 \sin \theta_1=n_2 \sin \theta_2$
 408
 409
 410% +++++++++++++++++++++++
 411\section{Light and Matter}
 412
 413  % -----------------------
 414  \subsection*{Planck's equation}
 415
 416  \[ f={c \over \lambda},\quad E=hf={hc \over \lambda}=\rho c \]
 417  \[ h=6.63 \times 10^{-34}\operatorname{J s}=4.14 \times 10^{-15} \operatorname{eV s} \]
 418  \[ 1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J} \]
 419
 420  \subsection*{Force of electrons}
 421  \[ F={2P_{\text{in}}\over c} \]
 422  % \begin{align*}
 423    \[ \text{photons / sec} = {\text{total energy} \over \text{energy / photon}} \]
 424    \[ ={{P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf} \]
 425    % ={P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf}
 426  % \end{align*}
 427
 428  \subsection*{Photoelectric effect}
 429
 430  \begin{itemize}
 431    \item $V_{\operatorname{supply}}$ does not affect photocurrent
 432    \item $V_{\operatorname{sup}} > 0$: e- attracted to collector anode
 433    \item $V_{\operatorname{sup}} < 0$: attracted to illuminated cathode, $I\rightarrow 0$
 434    \item $v$ of depends on ionisation energy (shell)
 435    \item max current depends on intensity
 436  \end{itemize}
 437
 438  \textbf{Threshold frequency $f_0$}
 439
 440  Minimum $f$ for photoelectrons to be ejected. $x$-intercept of frequency vs $E_K$ graph. if $f < f_0$, no photoelectrons are detected.
 441
 442  \textbf{Work function $\phi$}
 443
 444  Minimum $E$ required to release photoelectrons. Magnitude of $y$-intercept of frequency vs $E_K$ graph. $\phi$ is determined by strength of bonding.
 445
 446   $\phi=hf_0$
 447
 448  \textbf{Kinetic energy}
 449
 450  E_{\operatorname{k-max}}=hf - \phi
 451
 452  voltage in circuit or stopping voltage = max $E_K$ in eV
 453  equal to $x$-intercept of volts vs current graph (in eV)
 454
 455  \textbf{Stopping potential $V$ for min $I$}
 456
 457  $V=h_{\text{eV}}(f-f_0)$
 458
 459  % \columnbreak
 460
 461  \subsection*{De Broglie's theory}
 462
 463  \[ \lambda = {h \over \rho} = {h \over mv} \]
 464  \[ \rho = {hf \over c} = {h \over \lambda} = mv, \quad E = \rho c \]
 465  \begin{itemize}
 466    \item cannot confirm with double-slit (slit $< r_{\operatorname{proton}}$)
 467    \item confirmed by similar e- and x-ray diff patterns
 468  \end{itemize}
 469
 470  \subsection*{X-ray electron interaction}
 471
 472  \begin{itemize}
 473    \item e- is only stable if $mvr = n{h \over 2\pi}$ where $n \in \mathbb{Z}$
 474    \item rearranging this, $2\pi r = n{h \over mv} = n \lambda$ (circumference)
 475    \item if $2\pi r \ne n{h \over mv}$, no standing wave
 476    \item if e- = x-ray diff patterns, $E_{\text{e-}}={\rho^2 \over 2m}={({h \over \lambda})^2 \div 2m}$
 477    \item calculating $h$: $\lambda = {h \over \rho}$
 478  \end{itemize}
 479
 480  \subsection*{Spectral analysis}
 481
 482  \begin{itemize}
 483    \item $\Delta E = hf = {hc \over \lambda}$ between ground / excited state
 484    \item $E$ and $f$ of photon: $E_2 - E_1 = hf = {hc \over \lambda}$
 485    \item Ionisation energy - min $E$ required to remove e-
 486    \item EMR is absorbed/emitted when $E_{\operatorname{K-in}}=\Delta E_{\operatorname{shells}}$ (i.e. $\lambda = {hc \over \Delta E_{\operatorname{shells}}}$)
 487    \item No. of lines - include all possible states
 488  \end{itemize}
 489
 490  \subsection*{Uncertainty principle}
 491
 492  measuring location of an e- requires hitting it with a photon, but this causes $\rho$ to be transferred to electron, moving it.
 493
 494  \subsection*{Wave-particle duaity}
 495
 496  \subsubsection*{wave model}
 497  \begin{itemize}
 498    \item cannot explain photoelectric effect
 499    \item $f$ is irrelevant to photocurrent
 500    \item predicts delay between incidence and ejection
 501    \item speed depends on medium
 502  \end{itemize}
 503
 504  \subsubsection*{particle model}
 505
 506  \begin{itemize}
 507    \item explains photoelectric effect
 508    \item rate of photoelectron release $\propto$ intensity
 509    \item no time delay - one photon releases one electron
 510    \item double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
 511    \item light exerts force
 512    \item light bent by gravity
 513    \item quantised energy
 514  \end{itemize}
 515
 516  % +++++++++++++++++++++++
 517  \section{Experimental \\ design}
 518
 519  \textbf{Absolute uncertainty} $\Delta$ \\
 520  (same units as quantity)
 521  \[ \Delta(m) = {{\mathcal{E}(m)} \over 100} \cdot m \]
 522  \[ (A \pm \Delta A) + (B \pm \Delta A) = (A+B) \pm (\Delta A + \Delta B) \]
 523  \[ (A \pm \Delta A) - (B \pm \Delta A) = (A-B) \pm (\Delta A + \Delta B) \]
 524  \[ c(A \pm \Delta A) = cA \pm c \Delta A \]
 525
 526  \textbf{Relative uncertainty} $\mathcal{E}$ (unitless)
 527  \[ \mathcal{E}(m) = {{\Delta(m)} \over m} \cdot 100 \]
 528  \[ (A \pm \mathcal{E} A) \cdot (B \pm \mathcal{E} B) = (A \cdot B) \pm (\mathcal{E} A + \mathcal{E} B) \]
 529  \[ (A \pm \mathcal{E} A) \div (B \pm \mathcal{E} B) = (A \div B) \pm (\mathcal{E} A + \mathcal{E} B) \]
 530  \[ (A \pm \mathcal{E} A)^n = (A^n \pm n \mathcal{E} A) \]
 531  \[ c(A \pm \mathcal{E} A)=cA \pm \mathcal{E} A \]
 532
 533  Uncertainty of a measurement is $1 \over 2$ the smallest division
 534
 535  \textbf{Precision} - concordance of values \\
 536  \textbf{Accuracy} - closeness to actual value
 537
 538  \columnbreak
 539
 540  \quad
 541
 542
 543
 544
 545
 546
 547\end{multicols}
 548
 549% \includegraphics[height=5cm]{graphics/em-spectrum.png}
 550
 551\end{document}