1\documentclass[a4paper]{article}
2\usepackage{multicol}
3\usepackage[cm]{fullpage}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\setlength{\parindent}{0cm}
7\usepackage[nodisplayskipstretch]{setspace}
8\setstretch{1.3}
9\usepackage{graphicx}
10\usepackage{wrapfig}
11\usepackage{enumitem}
12\setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt,leftmargin=5pt}
13
14
15\begin{document}
16
17\pagenumbering{gobble}
18\begin{multicols}{3}
19
20% +++++++++++++++++++++++
21
22{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
23
24% +++++++++++++++++++++++
25\section{Motion}
26
27 $\operatorname{m/s} \, \times \, 3.6 = \operatorname{km/h}$
28
29 \subsection*{Inclined planes}
30 $F = m g \sin\theta - F_{\text{frict}} = m a$
31
32% -----------------------
33 \subsection*{Banked tracks}
34
35 \includegraphics[height=4cm]{graphics/banked-track.png}
36
37 $\theta = \tan^{-1} {{v^2} \over rg}$
38
39 $\Sigma F$ always acts towards centre, but not necessarily horizontally
40
41 $\Sigma F = F_{\operatorname{norm}} + F_{\operatorname{g}}={{mv^2} \over r} = mg \tan \theta$
42
43 Design speed $v = \sqrt{gr\tan\theta}$
44
45 $n\sin \theta = {mv^2 \div r}, \quad n\cos \theta = mg$
46
47% -----------------------
48 \subsection*{Work and energy}
49
50 $W=Fx=\Delta \Sigma E$ (work)
51
52 $E_K = {1 \over 2}mv^2$ (kinetic)
53
54 $E_G = mgh$ (potential)
55
56 $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
57
58% -----------------------
59 \subsection*{Horizontal circular motion}
60
61 $v = {{2 \pi r} \over T}$
62
63 $f = {1 \over T}, \quad T = {1 \over f}$
64
65 $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
66
67 $\Sigma F, a$ towards centre, $v$ tangential
68
69 $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
70
71 \includegraphics[height=4cm]{graphics/circ-forces.png}
72
73% -----------------------
74 \subsection*{Vertical circular motion}
75
76 $T =$ tension, e.g. circular pendulum
77
78 $T+mg = {{mv^2}\over r}$ at highest point
79
80 $T-mg = {{mv^2} \over r}$ at lowest point
81
82% -----------------------
83 \subsection*{Projectile motion}
84 \begin{itemize}
85 \item{horizontal component of velocity is constant if no air resistance}
86 \item{vertical component affected by gravity: $a_y = -g$}
87 \end{itemize}
88
89 \begin{align*}
90 v=\sqrt{v^2_x + v^2_y} \tag{vectors} \\
91 h={{u^2\sin \theta ^2}\over 2g} \tag{max height}\\
92 x=ut\cos\theta \tag{$\Delta x$ at $t$} \\
93 y=ut \sin \theta-{1 \over 2}gt^2 \tag{height at $t$} \\
94 t={{2u\sin\theta}\over g} \tag{time of flight}\\
95 d={v^2 \over g}\sin \theta \tag{horiz. range} \\
96 \end{align*}
97
98 \includegraphics[height=3.2cm]{graphics/projectile-motion.png}
99
100% -----------------------
101 \subsection*{Pulley-mass system}
102
103 $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
104
105 $\Sigma F = m_2g-m_1g=\Sigma ma$ (solve)
106
107% -----------------------
108 \subsection*{Graphs}
109 \begin{itemize}
110 \item{Force-time: $A=\Delta \rho$}
111 \item{Force-disp: $A=W$}
112 \item{Force-ext: $m=k,\quad A=E_{spr}$}
113 \item{Force-dist: $A=\Delta \operatorname{gpe}$}
114 \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
115 \end{itemize}
116
117% -----------------------
118 \subsection*{Hooke's law}
119
120 $F=-kx$
121
122 $\text{elastic potential energy} = {1 \over 2}kx^2$
123
124% -----------------------
125 \subsection*{Motion equations}
126
127 \begin{tabular}{ l r }
128 & no \\
129 $v=u+at$ & $x$ \\
130 $x = {1 \over 2}(v+u)t$ & $a$ \\
131 $x=ut+{1 \over 2}at^2$ & $v$ \\
132 $x=vt-{1 \over 2}at^2$ & $u$ \\
133 $v^2=u^2+2ax$ & $t$ \\
134 \end{tabular}
135
136% -----------------------
137 \subsection*{Momentum}
138
139 $\rho = mv$
140
141 $\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
142
143 $\Sigma mv_0=\Sigma mv_1$ (conservation)
144
145 $\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
146
147 $n$-body collisions: $\rho$ of each body is independent
148
149% ++++++++++++++++++++++
150\section{Relativity}
151
152 \subsection*{Postulates}
153 1. Laws of physics are constant in all intertial reference frames
154
155 2. Speed of light $c$ is the same to all observers (Michelson-Morley)
156
157 $\therefore \, t$ must dilate as speed changes
158
159 {\bf Inertial reference frame} $a=0$
160
161 {\bf Proper time $t_0$ $\vert$ length $l_0$} measured by observer in same frame as events
162
163% -----------------------
164 \subsection*{Lorentz factor}
165
166 $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
167
168 $t=t_0 \gamma$ ($t$ longer in moving frame)
169
170 $l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
171
172 $m=m_0 \gamma$ (mass dilation)
173
174 $$v = c\sqrt{1-{1 \over \gamma^2}}$$
175
176% -----------------------
177 \subsection*{Energy and work}
178
179 $E_0 = mc^2$ (rest)
180
181 $E_{total} = E_K + E_{rest} = \gamma mc^2$
182
183 $E_K = (\gamma 1)mc^2$
184
185 $W = \Delta E = \Delta mc^2$
186
187% -----------------------
188 \subsection*{Relativistic momentum}
189
190 $$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
191
192 $\rho \rightarrow \infty$ as $v \rightarrow c$
193
194 $v=c$ is impossible (requires $E=\infty$)
195
196 $$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
197
198% -----------------------
199 \subsection*{High-altitude muons}
200 \begin{itemize}
201 {\item $t$ dilation more muons reach Earth than expected}
202 {\item normal half-life $2.2 \operatorname{\mu s}$ in stationary frame, $> 2.2 \operatorname{\mu s}$ observed from Earth}
203 \end{itemize}
204
205% +++++++++++++++++++++++
206\section{Fields and power}
207
208 \subsection*{Non-contact forces}
209 \begin{itemize}
210 {\item electric fields (dipoles \& monopoles)}
211 {\item magnetic fields (dipoles only)}
212 {\item gravitational fields (monopoles only)}
213 \end{itemize}
214
215 \vspace{1em}
216
217 \begin{itemize}
218 \item monopoles: lines towards centre
219 \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (or perpendicular to wire)
220 \item closer field lines means larger force
221 \item dot: out of page, cross: into page
222 \item +ve corresponds to N pole
223 \end{itemize}
224
225 \includegraphics[height=2cm]{graphics/field-lines.png}
226 % \includegraphics[height=2cm]{graphics/bar-magnet-fields-rotated.png}
227
228% -----------------------
229 \subsection*{Gravity}
230
231 \[F_g=G{{m_1m_2}\over r^2}\tag{grav. force}\]
232 \[g={F_g \over m_2}=G{m_{1} \over r^2}\tag{field of $m_1$}\]
233 \[E_g = mg \Delta h\tag{gpe}\]
234 \[W = \Delta E_g = Fx\tag{work}\]
235 \[w=m(g-a) \tag{app. weight}\]
236
237 % \columnbreak
238
239% -----------------------
240 \subsection*{Satellites}
241
242 \[v=\sqrt{Gm_{\operatorname{planet}} \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
243
244 \[T={\sqrt{4 \pi^2 r^2} \over {GM}}\tag{period}\]
245
246 \[\sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
247
248% -----------------------
249 \subsection*{Magnetic fields}
250 \begin{itemize}
251 \item field strength $B$ measured in tesla
252 \item magnetic flux $\Phi$ measured in weber
253 \item charge $q$ measured in coulombs
254 \item emf $\mathcal{E}$ measured in volts
255 \end{itemize}
256
257 % \[{E_1 \over E_2}={r_1 \over r_2}^2\]
258
259 \[F=qvB\tag{$F$ on moving $q$}\]
260 \[F=IlB\tag{$F$ of $B$ on $I$}\]
261 \[r={mv \over qB} \tag{radius of $q$ in $B$}\]
262
263 if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
264
265% -----------------------
266 \subsection*{Electric fields}
267
268 \[F=qE \tag{$E$ = strength} \]
269 \[F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \]
270 \[E=k{q \over r^2} \tag{field on point charge} \]
271 \[E={V \over d} \tag{field between plates}\]
272 \[F=BInl \tag{force on a coil} \]
273 \[\Phi = B_{\perp}A\tag{magnetic flux} \]
274 \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \]
275 \[{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \]
276
277 \textbf{Lenz's law:} $I_{\operatorname{emf}}$ opposes $\Delta \Phi$
278
279 \textbf{Eddy currents:} counter movement within a field
280
281 \textbf{Right hand grip:} thumb points to $I$ (single wire) or N (solenoid / coil)
282
283 \includegraphics[height=2cm]{graphics/slap-2.jpeg}
284 \includegraphics[height=3cm]{graphics/grip.png}
285
286 % \textbf{Right hand slap:} $B \perp I \perp F$ \\
287 % ($I$ = thumb)
288
289 \textbf{Flux-time graphs:} $m \times n = \operatorname{emf}$
290
291 \textbf{Transformers:} core strengthens \& focuses $\Phi$
292
293% -----------------------
294 \subsection*{Particle acceleration}
295
296 $1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
297
298 e- accelerated with $x$ V is given $x$ eV
299
300 \[W={1\over2}mv^2=qV \tag{field or points}\]
301 \[v=\sqrt{{2qV} \over {m}}\tag{velocity of particle}\]
302
303
304% -----------------------
305 \subsection*{Power transmission}
306
307 % \begin{align*}
308 \[V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \]
309 \[P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \]
310 \[V_{\operatorname{loss}}=IR \]
311 % \end{align*}
312
313 Use high-$V$ side for correct $|V_{drop}|$
314
315 \begin{itemize}
316 {\item Parallel $V$ is constant}
317 {\item Series $V$ shared within branch}
318 \end{itemize}
319
320 \includegraphics[height=4cm]{graphics/ac-generator.png}
321
322% -----------------------
323 \subsection*{Motors}
324% \begin{wrapfigure}{r}{-0.1\textwidth}
325
326 \includegraphics[height=4cm]{graphics/dc-motor-2.png}
327 \includegraphics[height=3cm]{graphics/ac-motor.png} \\
328% \end{wrapfigure}
329 \textbf{DC:} split ring (two halves)
330
331% \begin{wrapfigure}{r}{0.3\textwidth}
332
333% \end{wrapfigure}
334 \textbf{AC:} slip ring (separate rings with constant contact)
335
336% \pagebreak
337
338% +++++++++++++++++++++++
339\section{Waves}
340
341 \textbf{nodes:} fixed on graph \\
342 \textbf{amplitude:} max disp. from $y=0$ \\
343 \textbf{rarefactions} and \textbf{compressions} \\
344 \textbf{mechanical:} transfer of energy without net transfer of matter \\
345
346
347 \textbf{Longitudinal (motion $||$ wave)}
348 \includegraphics[width=6cm]{graphics/longitudinal-waves.png}
349
350 \textbf{Transverse (motion $\perp$ wave)}
351 \includegraphics[width=6cm]{graphics/transverse-waves.png}
352
353 % -----------------------
354 $T={1 \over f}\quad$(period: time for one cycle)
355 $v=f \lambda \quad$(speed: displacement / sec)
356
357 % -----------------------
358 \subsection*{Doppler effect}
359 When $P_1$ approaches $P_2$, each wave $w_n$ has slightly less distance to travel than $w_{n-1}$. $w_n$ reaches observer sooner than $w_{n-1}$ ("apparent" $\lambda$).
360
361 % -----------------------
362 \subsection*{Interference}
363
364
365
366 \textbf{Standing waves} - constructive int. at resonant freq
367
368 \subsection*{Harmonics}
369
370
371 \(\lambda = {{al} \div n}\quad\) (\(\lambda\) for \(n^{th}\) harmonic)\\
372 \(f = {nv \div al}\quad\) (\(f\) for \(n_{th}\) harmonic at length
373 \(l\) and speed \(v\)) \\
374 where \(a=2\) for antinodes at both ends, \(a=4\) for antinodes at one end
375
376 % -----------------------
377 \subsection*{Polarisation}
378 \includegraphics[height=3.5cm]{graphics/polarisation.png}
379
380 % -----------------------
381 \subsection*{Diffraction}
382 \includegraphics[width=6cm]{graphics/diffraction.jpg}
383 \includegraphics[width=6cm]{graphics/diffraction-2.png}
384 \begin{itemize}
385 \item \(pd = |S_1P-S_2P|\) for \(p\) on screen
386 \item Constructive: \(pd = n\lambda, n \in \mathbb{Z}\)
387 \item Destructive: \(pd = (n-{1 \over 2})\lambda, n \in \mathbb{Z}\)
388 \item Fringe separation: \(\Delta x = {{\lambda l }\over d}\) where \\
389 \(\Delta x\) = fringe spacing \\
390 \(l\) = distance from slits to screen\\
391 \(d\) = slit separation (\(=S_1-S_2\))
392 \item significant diffraction when ${\lambda \over \Delta x} \ge 1$
393 \end{itemize}
394
395
396
397 % -----------------------
398 \subsection*{Refraction}
399 \includegraphics[height=3.5cm]{graphics/refraction.png}
400
401 When a medium changes character, energy is \emph{reflected}, \emph{absorbed}, and \emph{transmitted}
402
403 angle of incidence $\theta_i =$ angle of reflection $\theta_r$
404
405 Critical angle $\theta_c = \sin^-1{n_2 \over n_1}$
406
407 Snell's law $n_1 \sin \theta_1=n_2 \sin \theta_2$
408
409
410% +++++++++++++++++++++++
411\section{Light and Matter}
412
413 % -----------------------
414 \subsection*{Planck's equation}
415
416 \[ f={c \over \lambda},\quad E=hf={hc \over \lambda}=\rho c \]
417 \[ h=6.63 \times 10^{-34}\operatorname{J s}=4.14 \times 10^{-15} \operatorname{eV s} \]
418 \[ 1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J} \]
419
420 \subsection*{Force of electrons}
421 \[ F={2P_{\text{in}}\over c} \]
422 % \begin{align*}
423 \[ \text{photons / sec} = {\text{total energy} \over \text{energy / photon}} \]
424 \[ ={{P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf} \]
425 % ={P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf}
426 % \end{align*}
427
428 \subsection*{Photoelectric effect}
429
430 \begin{itemize}
431 \item $V_{\operatorname{supply}}$ does not affect photocurrent
432 \item $V_{\operatorname{sup}} > 0$: e- attracted to collector anode
433 \item $V_{\operatorname{sup}} < 0$: attracted to illuminated cathode, $I\rightarrow 0$
434 \item $v$ of depends on ionisation energy (shell)
435 \item max current depends on intensity
436 \end{itemize}
437
438 \textbf{Threshold frequency $f_0$}
439
440 Minimum $f$ for photoelectrons to be ejected. $x$-intercept of frequency vs $E_K$ graph. if $f < f_0$, no photoelectrons are detected.
441
442 \textbf{Work function $\phi$}
443
444 Minimum $E$ required to release photoelectrons. Magnitude of $y$-intercept of frequency vs $E_K$ graph. $\phi$ is determined by strength of bonding.
445
446 $\phi=hf_0$
447
448 \textbf{Kinetic energy}
449
450 E_{\operatorname{k-max}}=hf - \phi
451
452 voltage in circuit or stopping voltage = max $E_K$ in eV
453 equal to $x$-intercept of volts vs current graph (in eV)
454
455 \textbf{Stopping potential $V$ for min $I$}
456
457 $V=h_{\text{eV}}(f-f_0)$
458
459 % \columnbreak
460
461 \subsection*{De Broglie's theory}
462
463 \[ \lambda = {h \over \rho} = {h \over mv} \]
464 \[ \rho = {hf \over c} = {h \over \lambda} = mv, \quad E = \rho c \]
465 \begin{itemize}
466 \item cannot confirm with double-slit (slit $< r_{\operatorname{proton}}$)
467 \item confirmed by similar e- and x-ray diff patterns
468 \end{itemize}
469
470 \subsection*{X-ray electron interaction}
471
472 \begin{itemize}
473 \item e- is only stable if $mvr = n{h \over 2\pi}$ where $n \in \mathbb{Z}$
474 \item rearranging this, $2\pi r = n{h \over mv} = n \lambda$ (circumference)
475 \item if $2\pi r \ne n{h \over mv}$, no standing wave
476 \item if e- = x-ray diff patterns, $E_{\text{e-}}={\rho^2 \over 2m}={({h \over \lambda})^2 \div 2m}$
477 \item calculating $h$: $\lambda = {h \over \rho}$
478 \end{itemize}
479
480 \subsection*{Spectral analysis}
481
482 \begin{itemize}
483 \item $\Delta E = hf = {hc \over \lambda}$ between ground / excited state
484 \item $E$ and $f$ of photon: $E_2 - E_1 = hf = {hc \over \lambda}$
485 \item Ionisation energy - min $E$ required to remove e-
486 \item EMR is absorbed/emitted when $E_{\operatorname{K-in}}=\Delta E_{\operatorname{shells}}$ (i.e. $\lambda = {hc \over \Delta E_{\operatorname{shells}}}$)
487 \item No. of lines - include all possible states
488 \end{itemize}
489
490 \subsection*{Uncertainty principle}
491
492 measuring location of an e- requires hitting it with a photon, but this causes $\rho$ to be transferred to electron, moving it.
493
494 \subsection*{Wave-particle duaity}
495
496 \subsubsection*{wave model}
497 \begin{itemize}
498 \item cannot explain photoelectric effect
499 \item $f$ is irrelevant to photocurrent
500 \item predicts delay between incidence and ejection
501 \item speed depends on medium
502 \end{itemize}
503
504 \subsubsection*{particle model}
505
506 \begin{itemize}
507 \item explains photoelectric effect
508 \item rate of photoelectron release $\propto$ intensity
509 \item no time delay - one photon releases one electron
510 \item double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
511 \item light exerts force
512 \item light bent by gravity
513 \item quantised energy
514 \end{itemize}
515
516 % +++++++++++++++++++++++
517 \section{Experimental \\ design}
518
519 \textbf{Absolute uncertainty} $\Delta$ \\
520 (same units as quantity)
521 \[ \Delta(m) = {{\mathcal{E}(m)} \over 100} \cdot m \]
522 \[ (A \pm \Delta A) + (B \pm \Delta A) = (A+B) \pm (\Delta A + \Delta B) \]
523 \[ (A \pm \Delta A) - (B \pm \Delta A) = (A-B) \pm (\Delta A + \Delta B) \]
524 \[ c(A \pm \Delta A) = cA \pm c \Delta A \]
525
526 \textbf{Relative uncertainty} $\mathcal{E}$ (unitless)
527 \[ \mathcal{E}(m) = {{\Delta(m)} \over m} \cdot 100 \]
528 \[ (A \pm \mathcal{E} A) \cdot (B \pm \mathcal{E} B) = (A \cdot B) \pm (\mathcal{E} A + \mathcal{E} B) \]
529 \[ (A \pm \mathcal{E} A) \div (B \pm \mathcal{E} B) = (A \div B) \pm (\mathcal{E} A + \mathcal{E} B) \]
530 \[ (A \pm \mathcal{E} A)^n = (A^n \pm n \mathcal{E} A) \]
531 \[ c(A \pm \mathcal{E} A)=cA \pm \mathcal{E} A \]
532
533 Uncertainty of a measurement is $1 \over 2$ the smallest division
534
535 \textbf{Precision} - concordance of values \\
536 \textbf{Accuracy} - closeness to actual value
537
538 \columnbreak
539
540 \quad
541
542
543
544
545
546
547\end{multicols}
548
549% \includegraphics[height=5cm]{graphics/em-spectrum.png}
550
551\end{document}