1--- 2geometry: margin=2cm 3<!-- columns: 2 --> 4graphics: yes 5tables: yes 6author: Andrew Lorimer 7classoption: twocolumn 8header-includes: 9- \usepackage{harpoon} 10- \usepackage{amsmath} 11- \pagenumbering{gobble} 12 13--- 14 15# Vectors 16 17- **vector:** a directed line segment 18- arrow indicates direction 19- length indicates magnitude 20- notated as $\vec{a}, \widetilde{A}, \overrightharp{a}$ 21- column notation: $\begin{bmatrix} 22 x \\ y 23 \end{bmatrix}$ 24- vectors with equal magnitude and direction are equivalent 25 26 27![](graphics/vectors-intro.png){#id .class width=20%} 28 29## Vector addition 30 31$\boldsymbol{u} + \boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines. 32Addition is commutative (parallelogram) 33 34## Scalar multiplication 35 36For $k \in \mathbb{R}^+$, $k\boldsymbol{u}$ has the same direction as $\boldsymbol{u}$ but length is multiplied by a factor of $k$. 37 38When multiplied by $k < 0$, direction is reversed and length is multplied by $k$. 39 40## Vector subtraction 41 42To find $\boldsymbol{u} - \boldsymbol{v}$, add $\boldsymbol{-v}$ to $\boldsymbol{u}$ 43 44## Parallel vectors 45 46Same or opposite direction 47 48$$\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}$$ 49 50## Position vectors 51 52Vectors may describe a position relative to $O$. 53 54For a point $A$, the position vector is $\overrightharp{OA}$ 55 56\vfill\eject 57 58## Linear combinations of non-parallel vectors 59 60If two non-zero vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are not parallel, then: 61 62$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q$$ 63 64![](graphics/parallelogram-vectors.jpg){#id .class width=20%} 65![](graphics/vector-subtraction.jpg){#id .class width=10%} 66 67## Column vector notation 68 69A vector between points $A(x_1,y_1), \> B(x_2,y_2)$ can be represented as $\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}$ 70 71## Component notation 72 73A vector $\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$. 74$\boldsymbol{u}$ is the sum of two components $x\boldsymbol{i}$ and $y\boldsymbol{j}$ 75Magnitude of vector $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$ 76 77Basic algebra applies: 78$(x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}$ 79Two vectors equal if and only if their components are equal. 80 81## Unit vector $|\hat{\boldsymbol{a}}|=1$ 82 83\begin{equation}\begin{split}\hat{\boldsymbol{a}} & = {1 \over {|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\end{equation} 84 85## Scalar/dot product $\boldsymbol{a} \cdot \boldsymbol{b}$ 86 87$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$$ 88 89**on CAS:** `dotP([a b c], [d e f])` 90 91## Scalar product properties 92 931. $k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})$ 942. $\boldsymbol{a \cdot 0}=0$ 953. $\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}$ 964. $\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1$ 975. If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular 986. $\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2$ 99 100For parallel vectors $\boldsymbol{a}$ and $\boldsymbol{b}$: 101$$\boldsymbol{a \cdot b}=\begin{cases} 102|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\ 103-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions} 104\end{cases}$$ 105 106## Geometric scalar products 107 108$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$ 109 110where $0 \le \theta \le \pi$ 111 112## Perpendicular vectors 113 114If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, then $\boldsymbol{a} \perp \boldsymbol{b}$ (since $\cos 90 = 0$) 115 116## Finding angle between vectors 117 118**positive direction** 119 120$$\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}$$ 121 122**on CAS:** `angle([a b c], [a b c])` (Action -> Vector -> Angle) 123 124## Angle between vector and axis 125 126Direction of a vector can be given by the angles it makes with $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ directions. 127 128For $\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}$ which makes angles $\alpha, \beta, \gamma$ with positive direction of $x, y, z$ axes: 129$$\cos \alpha = {a_1 \over |\boldsymbol{a}|}, \quad \cos \beta = {a_2 \over |\boldsymbol{a}|}, \quad \cos \gamma = {a_3 \over |\boldsymbol{a}|}$$ 130 131**on CAS:** `angle([a b c], [1 0 0])` for angle between $a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$ and $x$-axis 132 133## Vector projections 134 135Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitude of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$: 136 137$$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$ 138 139## Scalar resolute of $\boldsymbol{a}$ on $\boldsymbol{b}$ 140 141$$r_s = |\boldsymbol{u}| = \boldsymbol{a} \cdot \hat{\boldsymbol{b}}$$ 142 143## Vector resolute of $\boldsymbol{a} \perp \boldsymbol{b}$ 144 145$$\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u} \> \text{ where } \boldsymbol{u} \text{ is projection } \boldsymbol{a} \text{ on } \boldsymbol{b}$$ 146 147## Vector proofs 148 149### Concurrent lines 150 151$\ge$ 3 lines intersect at a single point 152 153### Collinear points 154 155$\ge$ 3 points lie on the same line 156$\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}$ where $\lambda + \mu = 1$. If $C$ is between $\vec{AB}$, then $0 < \mu < 1$ 157Points $A, B, C$ are collinear iff $\vec{AC}=m\vec{AB} \text{ where } m \ne 0$ 158 159### Useful vector properties 160 161- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel, then $\boldsymbol{b}=k\boldsymbol{a}$ for some $k \in \mathbb{R} \setminus \{0\}$ 162- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel with at least one point in common, then they lie on the same straight line 163- Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$ 164- $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$ 165 166## Linear dependence 167 168Vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are linearly dependent if they are non-parallel and: 169 170$$k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0$$ 171$$\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}$$ 172 173$\boldsymbol{a}, \boldsymbol{b},$ and $\boldsymbol{c}$ are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel. 174 175Vector $\boldsymbol{w}$ is a linear combination of vectors $\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}$ 176 177## Three-dimensional vectors 178 179Right-hand rule for axes: $z$ is up or out of page. 180 181i![](graphics/vectors-3d.png) 182 183## Parametric vectors 184 185Parametric equation of line through point $(x_0, y_0, z_0)$ and parallel to $a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$ is: 186 187\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation} 188 189## Vector functions 190 191$$\boldsymbol{r}(t)=x\boldsymbol{i}+y\boldsymbol{y}$$ 192 193- If $\boldsymbol{r}(t)$ represents position with time, then the graph of endpoints of $\boldsymbol{r}(t)$ represents the Cartesian path. 194- Domain of $\boldsymbol{r}(t)$ is the range of $x(t)$ 195- Range of $\boldsymbol{r}(t)$ is the range of $y(t)$