1# Circular functions
2
3## Radians and degrees
4
5$$1 \thinspace \operatorname{rad}={{180 \operatorname{deg}}\over \pi}$$
6
7## Exact values
8
9
10
11## $\sin$ and $\cos$ graphs
12
13$$f(x)=a \sin(bx-c)+d$$
14$$f(x)=a \cos(bx-c)+d$$
15
16where
17$a$ is the $y$-dilation (amplitude)
18$b$ is the $x$-dilation (period)
19$c$ is the $x$-shift (phase)
20$d$ is the $y$-shift (equilibrium position)
21
22Domain is $\mathbb{R}$
23Range is $[-b+c, b+c]$;
24
25Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$.
26
27<<<<<<< HEAD
28**Mean / equilibrium:** line that the graph oscillates around ($y=d$)
29
30## Solving trig equations
31
321. Solve domain for $n\theta$
332. Find solutions for $n\theta$
343. Divide solutions by $n$
35
36$\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\theta \in [0,4\pi])$
37$2\theta=\sin^{-1}{\sqrt{3} \over 2}$
38$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$
39$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$
40=======
41### Amplitude
42
43Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis
44
45$a=0$ produces straight line
46$a\lt0$ inverts the phase ($\sin$ becomes $\cos$, vice vera)
47
48### Period
49
50Period $T$ is ${2 \pi}\over b$
51$b=0$ produces straight line
52$b\lt0$ inverts the phase
53
54### Phase
55
56$c$ moves the graph left-right in the $x$ axis.
57If $c=T={{2\pi}\over b}$, the graph has no actual phase shift.
58
59## Symmetry
60
61$$\sin(\theta+{\pi\over 2})=\sin\theta$$
62$$\sin(\theta+\pi)=-\sin\theta$$
63
64$$\cos(\theta+{\pi \over 2})=-\cos\theta$$
65$$\cos(\theta+\pi)=-cos(\theta+{3\pi \over 2})=\cos(-\theta)$$
66
67## Pythagorean identity
68
69$$\cos^2\theta+\sin^2\theta=1$$
70
71## Complementary relationships
72
73$$\sin({\pi \over 2} - \theta)=\cos\theta$$
74$$\cos({\pi \over 2} - \theta)=\sin\theta$$
75
76$$\sin\theta=-\cos(\theta+{\pi \over 2})$$
77$$\cos\theta=\sin(\theta+{\pi \over 2})$$
78
79## $tan$ graph
80
81$$y=a\tan(nx)$$
82
83where
84$a$ is $x$-dilation (period)
85$n$ is $y$-dilation ($\equiv$ amplitude)
86period $T$ is $\pi \over n$
87range is $R$
88roots at $x={k\pi \over n}$
89asymptotes at $x={{(2k+1)\pi}\over 2},\quad k \in \mathbb{Z}$
90>>>>>>> 924c0548b3e7564d4015e879c56a46a5606807fe