1# Complex & Imaginary Numbers
2
3## Imaginary numbers
4
5$i^2 = -1$
6
7$\therefore i = \sqrt {-1}$
8
9### Simplifying negative surds
10
11$\sqrt{-2} = \sqrt{-1 \times 2}$
12
13 $= \sqrt{2}i$
14
15
16## Complex numbers
17
18$\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}$
19
20General form: $z=a+bi$
21- $\operatorname{Re}(z) = a$
22- $\operatorname{Im}(z) = b$
23
24### Addition
25
26If $z_1 = a+bi$ and $z_2=c+di$, then
27
28 $z_1+z_2 = (a+c)+(b+d)i$
29
30### Subtraction
31
32If $z_1=a+bi$ and $z_2=c+di$, then
33
34 $z_1−z_2=(a−c)+(b−d)i$
35
36### Multiplication by a real constant
37
38If $z=a+bi$ and $k \in \mathbb{R}$, then
39
40 $kz=ka+kbi$
41
42### Powers of $i$
43$i^0=1$
44$i^1=i$
45$i^2=-1$
46$i^3=-i$
47$i^4=1$
48$\dots$
49
50Therefore..
51- $i^{4n} = 1$
52- $i^{4n+1} = i$
53- $i^{4n+2} = -1$
54- $i^{4n+3} = -i$
55
56### Multiplying complex expressions
57
58If $z_1 = a+bi$ and $z_2=c+di$, then
59 $z_1 \times z_2 = (ac-bd)+(ad+bc)i$
60
61### Conjugates
62
63If $z=a+bi$, conjugate of $z$ is $\overline{z} = a-bi$ (flipped operator)
64
65Also, $z \overline{z} = (a+bi)(a-bi) = a^2+b^2$
66
67- Multiplication and addition are associative
68
69### Modulus
70
71Distance from origin.
72$|{z}|=\sqrt{a^2+b^2}$
73
74$\therefore z \overline{z} = |z|^2$
75
76### Multiplicative inverse
77
78$z^{-1} = {1 \over z} = {{a-bi} \over {a^2+B^2}} = {\overline{z} \over {|z|^2}}$
79
80### Dividing complex numbers
81
82${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}}$
83
84(using multiplicative inverse)
85
86In practice, rationalise denominator:
87${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$
88
89## Argand planes
90
91- Geometric representation of $\mathbb{C}$
92- Horizontal $= \operatorname{Re}(z)$; vertical $= \operatorname{Im}(z)$
93- Multiplication by $i$ results in an anticlockwise rotation of $\pi \over 2$
94
95## Solving complex quadratics
96
97To solve $z^2+a^2=0$ (sum of two squares):
98
99$z^2+a^2=z^2-(ai)^2$
100 $=(z+ai)(z-ai)$
101
102## Polar form
103
104General form:
105$z=r \operatorname{cis} \theta$
106$= r\operatorname{cos}\theta+r\operatorname{sin}\theta i$
107
108where
109- $z=a+bi$
110- $r$ is the distance from origin, given by Pythagoras ($r=\sqrt{x^2+y^2}$)
111- $\theta$ is the argument of $z$, CCW from origin
112
113Note each complex number has multiple polar representations:
114$z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ is integer number of revolutions
115
116### Multiplication and division in polar form
117
118$z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)$ (multiply moduli, add angles)
119
120${z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)$ (divide moduli, subtract angles)
121
122## de Moivres' Theorum
123
124$(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta)$