spec / complex.htmlon commit [english] finalise SOI and ppt (6bfb968)
   1<!DOCTYPE html>
   2<html>
   3  <head>
   4    <meta charset="utf-8" />
   5    <title>sequences</title><script type="text/x-mathjax-config">
   6  MathJax.Hub.Config({
   7    jax: ["input/TeX","output/HTML-CSS"],
   8    extensions: ["[a11y]/accessibility-menu.js"],
   9    TeX: {
  10  "Macros": {},
  11  "equationNumbers": {
  12    "autoNumber": "AMS",
  13    "useLabelIds": false
  14  },
  15  "extensions": [
  16    "AMSmath.js",
  17    "AMSsymbols.js",
  18    "noErrors.js",
  19    "noUndefined.js"
  20  ]
  21},
  22    showMathMenu: true
  23  });
  24</script>
  25<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js"></script>
  26    <style>body { padding: 0; margin: 0; }
  27.markdown-preview-plus-view:not([data-use-github-style]) {
  28  font-size: 0.95em;
  29  font-family: Helvetica;
  30  column-count: 2;
  31}
  32.markdown-preview-plus-view:not([data-use-github-style]) > :first-child {
  33  margin-top: 0;
  34}
  35.markdown-preview-plus-view:not([data-use-github-style]) h1,
  36.markdown-preview-plus-view:not([data-use-github-style]) h2,
  37.markdown-preview-plus-view:not([data-use-github-style]) h3,
  38.markdown-preview-plus-view:not([data-use-github-style]) h4,
  39.markdown-preview-plus-view:not([data-use-github-style]) h5,
  40.markdown-preview-plus-view:not([data-use-github-style]) h6 {
  41  /* line-height: 1.2; */
  42  /* margin-top: 1.5em; */
  43  margin-bottom: 0.5em;
  44}
  45}
  46</style>
  47
  48  </head>
  49  <body class="markdown-preview-plus-view">
  50    <h1>Complex &amp; Imaginary Numbers</h1>
  51<h2>Imaginary numbers</h2>
  52<p><span class="math"><script type="math/tex">i^2 = -1</script></span></p>
  53<p><span class="math"><script type="math/tex">\therefore i = \sqrt {-1}</script></span></p>
  54<h3>Simplifying negative surds</h3>
  55<p><span class="math"><script type="math/tex">\sqrt{-2} = \sqrt{-1 \times 2}</script></span></p>
  56<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="math"><script type="math/tex">= \sqrt{2}i</script></span></p>
  57<h2>Complex numbers</h2>
  58<p><span class="math"><script type="math/tex">\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}</script></span></p>
  59<p>General form: <span class="math"><script type="math/tex">z=a+bi</script></span></p>
  60<ul>
  61<li><span class="math"><script type="math/tex">\operatorname{Re}(z) = a</script></span></li>
  62<li><span class="math"><script type="math/tex">\operatorname{Im}(z) = b</script></span></li>
  63</ul>
  64<h3>Addition</h3>
  65<p>If <span class="math"><script type="math/tex">z_1 = a+bi</script></span> and <span class="math"><script type="math/tex">z_2=c+di</script></span>, then</p>
  66<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <span class="math"><script type="math/tex">z_1+z_2 = (a+c)+(b+d)i</script></span></p>
  67<h3>Subtraction</h3>
  68<p>If <span class="math"><script type="math/tex">z_1=a+bi</script></span> and <span class="math"><script type="math/tex">z_2=c+di</script></span>, then</p>
  69<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="math"><script type="math/tex">z_1−z_2=(a−c)+(b−d)i</script></span></p>
  70<h3>Multiplication by a real constant</h3>
  71<p>If <span class="math"><script type="math/tex">z=a+bi</script></span> and <span class="math"><script type="math/tex">k \in \mathbb{R}</script></span>, then</p>
  72<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="math"><script type="math/tex">kz=ka+kbi</script></span></p>
  73<h3>Powers of <span class="math"><script type="math/tex">i</script></span></h3>
  74<p><span class="math"><script type="math/tex">i^0=1</script></span><br>
  75<span class="math"><script type="math/tex">i^1=i</script></span><br>
  76<span class="math"><script type="math/tex">i^2=-1</script></span><br>
  77<span class="math"><script type="math/tex">i^3=-i</script></span><br>
  78<span class="math"><script type="math/tex">i^4=1</script></span><br>
  79<span class="math"><script type="math/tex">\dots</script></span></p>
  80<p>Therefore…</p>
  81<ul>
  82<li><span class="math"><script type="math/tex">i^{4n} = 1</script></span></li>
  83<li><span class="math"><script type="math/tex">i^{4n+1} = i</script></span></li>
  84<li><span class="math"><script type="math/tex">i^{4n+2} = -1</script></span></li>
  85<li><span class="math"><script type="math/tex">i^{4n+3} = -i</script></span></li>
  86</ul>
  87<h3>Multiplying complex expressions</h3>
  88<p>If <span class="math"><script type="math/tex">z_1 = a+bi</script></span> and <span class="math"><script type="math/tex">z_2=c+di</script></span>, then<br>
  89&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="math"><script type="math/tex">z_1 \times z_2 = (ac-bd)+(ad+bc)i</script></span></p>
  90<h3>Conjugates</h3>
  91<p>If <span class="math"><script type="math/tex">z=a+bi</script></span>, conjugate of <span class="math"><script type="math/tex">z</script></span> is <span class="math"><script type="math/tex">\overline{z} = a-bi</script></span> (flipped operator)</p>
  92<p>Also, <span class="math"><script type="math/tex">z \overline{z} = (a+bi)(a-bi) = a^2+b^2</script></span></p>
  93<ul>
  94<li>Multiplication and addition are associative</li>
  95</ul>
  96<h3>Modulus</h3>
  97<p>Distance from origin.<br>
  98<span class="math"><script type="math/tex">|{z}|=\sqrt{a^2+b^2}</script></span></p>
  99<p><span class="math"><script type="math/tex">\therefore z \overline{z} = |z|^2</script></span></p>
 100<h3>Multiplicative inverse</h3>
 101<p><span class="math"><script type="math/tex">z^{-1} = {1 \over z} = {{a-bi} \over {a^2+B^2}} = {\overline{z} \over {|z|^2}}</script></span></p>
 102<h3>Dividing complex numbers</h3>
 103<p><span class="math"><script type="math/tex">{{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}}</script></span></p>
 104<p>(using multiplicative inverse)</p>
 105<p>In practice, rationalise denominator:<br>
 106<span class="math"><script type="math/tex">{z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}</script></span></p>
 107<h2>Argand planes</h2>
 108<ul>
 109<li>Geometric representation of <span class="math"><script type="math/tex">\mathbb{C}</script></span></li>
 110<li>Horizontal <span class="math"><script type="math/tex">= \operatorname{Re}(z)</script></span>; vertical <span class="math"><script type="math/tex">= \operatorname{Im}(z)</script></span></li>
 111<li>Multiplication by <span class="math"><script type="math/tex">i</script></span> results in an anticlockwise rotation of <span class="math"><script type="math/tex">\pi \over 2</script></span></li>
 112</ul>
 113<h2>Solving complex quadratics</h2>
 114<p>To solve <span class="math"><script type="math/tex">z^2+a^2=0</script></span> (sum of two squares):</p>
 115<p><span class="math"><script type="math/tex">z^2+a^2=z^2-(ai)^2</script></span><br>
 116&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="math"><script type="math/tex">=(z+ai)(z-ai)</script></span></p>
 117<h2>Polar form</h2>
 118<p>General form:<br>
 119<span class="math"><script type="math/tex">z=r \operatorname{cis} \theta</script></span><br>
 120<span class="math"><script type="math/tex">= r\operatorname{cos}\theta+r\operatorname{sin}\theta i</script></span></p>
 121<p>where</p>
 122<ul>
 123<li><span class="math"><script type="math/tex">z=a+bi</script></span></li>
 124<li><span class="math"><script type="math/tex">r</script></span> is the distance from origin, given by Pythagoras (<span class="math"><script type="math/tex">r=\sqrt{x^2+y^2}</script></span>)</li>
 125<li><span class="math"><script type="math/tex">\theta</script></span> is the argument of <span class="math"><script type="math/tex">z</script></span>, CCW from origin</li>
 126</ul>
 127<p>Note each complex number has multiple polar representations:<br>
 128<span class="math"><script type="math/tex">z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi</script></span>) where <span class="math"><script type="math/tex">n</script></span> is integer number of revolutions</p>
 129<h3>Multiplication and division in polar form</h3>
 130<p><span class="math"><script type="math/tex">z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)</script></span> (multiply moduli, add angles)</p>
 131<p><span class="math"><script type="math/tex">{z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)</script></span> (divide moduli, subtract angles)</p>
 132<h2>de Moivres’ Theorum</h2>
 133<p><span class="math"><script type="math/tex">(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta)</script></span></p>
 134
 135  </body>
 136</html>