spec / graphing.mdon commit start spec graphing techniques (7e58f46)
   1# Graphing techniques
   2
   3## Reciprocal continuous functions
   4
   5If $y=f(x)$, the reciprocal function is:
   6
   7$$y={1 \over f(x)}$$
   8
   9As $\quad f(x) \rightarrow \pm \infty,\quad {1 \over f(x)} \rightarrow 0^\pm$ (vert asymptote at $f(x)=0$)
  10
  11As $\quad x \rightarrow  \pm \infty,\quad {-1 \over x}$
  12
  13- reciprocal functions are always on the same side of $x=0$
  14- if $y=f(x)$ has a local max|min at $x=1$, then $y={1 \over f(x)}$ has a local max|min at $x=a$
  15- point of inflection at $P(1,1)$
  16
  17## Locus of points
  18
  19- set of points that satisfy a given condition
  20- path traced by a point that moves according to a condition
  21
  22### Circular loci
  23
  24$$(x-a)^2 + (y-b)^2 = r^2$$
  25
  26point $P(x,y)$ has a constant distance $r$ from point $C(a,b)$ (centre)
  27
  28### Linear loci
  29
  30$$QP=RP$$
  31$$\sqrt{(x_Q-q_P)^2+(y_Q-y_P)^2} = \sqrt{(x_R-x_P)^2+(y_R-y_P)^2}$$
  32
  33points $Q$ and $R$ are fixed and have a perpendicular bisector $QR$. Therefore, any point on line $y=mx+c$ is equidistant from $QP$ and $RP$.
  34
  35Since the bisector of the line joining points $Q$ and $R$ is perpendicular to $QR$:
  36
  37$$m(QR) \times m(RP) = -1$$
  38
  39### Parabolic loci
  40
  41$$PD=PF$$
  42$$|y-z|=\sqrt{(x-x_F)^2+(y-y_F)^2}$$
  43$$(y-z)^2=(x-x_F)^2+(y-y_F)^2$$
  44
  45Distance of point $P(x,y)$ from fixed point $F(a,b)$ is equal to the distance of $P$ from $y=z \perp$.
  46
  47Fixed point $F$ is the **focus** (halfway between $y=z$ and $y=y_P$)
  48
  49Fixed line $x=z$ is the **directrix**
  50
  51### Elliptical loci
  52
  53$$F_1 P + F_2 P =k$$
  54
  55**Two** foci at $F_1$ and $F_2$