1\documentclass[a4paper]{article} 2\usepackage[a4paper,margin=2cm]{geometry} 3\usepackage{multicol} 4\usepackage{amsmath} 5\usepackage{amssymb} 6\usepackage{enumitem} 7\usepackage{tcolorbox} 8\usepackage{fancyhdr} 9\usepackage{pgfplots} 10\usepackage{tabularx} 11 12\pagestyle{fancy} 13\fancyhead[LO,LE]{Unit 3 Methods Revision Lecture} 14\fancyhead[CO,CE]{Andrew Lorimer} 15 16\setlength\parindent{0pt} 17 18\begin{document} 19 20\title{\large Year 12 Methods \\ \huge Unit 3 Revision Lecture \\ \large Monash University \\ presented by Kevin McMenamin} 21\author{Andrew Lorimer} 22\date{5 July 2019} 23\renewcommand{\abstractname}{} 24\maketitle 25 26\section{Graphs} 27 28\textbf{16 types of graph}---put in reference book: 29\begin{multicols}{2} 30\begin{enumerate} 31\item truncus 32\item hyperbola 33\item sqrt 34\item parabola 35\item cubic 36\item quartic 37\item linear 38\item circle 39\item semicircle 40\item tan 41\item sin 42\item cos 43\item log 44\item exp 45\item $x^{a \over b}$ 46\item $x^{-a \over b}$ 47\end{enumerate} 48\end{multicols} 49 50\subsection{Power functions} 51 52\begin{itemize} 53\item In first quadrant, shape of graph for $x>0\cap y>0$ is either $\sqrt{x}$ or $x^2$ 54\end{itemize} 55 56\subsection{Features of graphs} 57 58\begin{itemize} 59\item Asymptotes 60\item Intercepts 61\item Stationary points 62\item Endpoints 63\item Other critical points 64\item Continuous or discontinuous 65\end{itemize} 66 67\begin{tcolorbox}[title=Key points] 68\begin{itemize} 69\item All transformations can be described by matrices 70\item Inverse is a transformation 71\item Memorise approximate values of $e,\>\pi,\>\sqrt{2},\>\sqrt{3}$ 72\item Put 16 base graphs in reference book 73\end{itemize} 74\end{tcolorbox} 75 76\section{Transformations} 77 78 Order: \qquad \textbf{Reflect $\longrightarrow$ Dilate $\longrightarrow$ Translate} 79 80\subsection{Two forms} 81 82\begin{itemize} 83\item note $a$ and $b$ can be positive or negative 84\item check validity of solutions for logarithms 85\item results in transformed equation $y^\prime = f^\prime(x)$ 86\end{itemize} 87 88 \[ y^\prime = a \cdot f(\dfrac{1}{b} (x^\prime - c)) + d \] 89 \[ 90\begin{bmatrix} 91 x^\prime \\ y^\prime 92\end{bmatrix} 93 = 94\begin{bmatrix} 95 b & 0 \\ 960 & a 97\end{bmatrix} 98\begin{bmatrix} 99 x \\ y 100\end{bmatrix} 101 + 102\begin{bmatrix} 103 c \\d 104\end{bmatrix} 105 \] 106 107\begin{tcolorbox}[title=Key points] 108\begin{itemize} 109\item All transformations can be described by matrices 110\item Inverse is a transformation 111\item Check validity of $\log_a x$ solutions/transformations 112\end{itemize} 113\end{tcolorbox} 114 115\section{Calculus} 116 117 Possible questions: 118\begin{itemize} 119\item Average rate of change 120\item Instantaneous rate of change 121\item Tangent line 122\item Normal line 123\item Features of gradient function 124\begin{itemize} 125\item Degree 126\item Orientation 127\item Format 128\item Turning points 129\item Inflection points 130\item Asymptotes 131\end{itemize} 132\item Find original function from derivative\\ 133 $\longrightarrow$ \textit{Use information to find unknowns} 134\item Application questions - e.g. Pythagoras, trig. functions, measurement, given eqn 135\end{itemize} 136 137\subsection{Integration} 138 139\subsubsection{Polynomials} 140 141 \[ f(x) = \int ax^n \> dx = \dfrac{ax^{n+1}}{n+1}+c \>, \quad n \ne -1 \] 142 \[f(x) = \int (ax+b)^n \> dx = \dfrac{(ax+b)^{n+1}}{a(n+1)}+c \>, \quad n \ne -1 \] 143 144\subsubsection{Exponentials} 145 146 \[ f(x) = \int e^{ax+b} \> dx = \dfrac{e^{ax+b}}{a}+c \] 147 148\subsubsection{Logarithms} 149 150\textit{ignore modulus for methods} 151 \[ f(x) = \int \dfrac{1}{x} \> dx = \ln|x| + c \] 152 \[ f(x) = \int \dfrac{1}{ax+b} \> dx = \dfrac{1}{a}\ln|ax+b| + c \] 153 \[ f(x) - \int \dfrac{h^\prime (x)}{h(x)} \> dx = \ln|h(x)|+c \tag{general form}\] 154 155\subsubsection{Trigonometric functions} 156 157 \[ f(x) = \int \cos(ax+b) \> dx = \dfrac{1}{a}\sin (ax+b) + c \] 158 \[ f(x) = \int \sin(ax+b) \> dx = -\dfrac{1}{a}\sin(ax+b) + c \] 159 \[ f(x) = \int \sec^2(ax+b) \> dx = \dfrac{1}{a}\tan(ax+b) + c \] 160 161\subsection{Area under curves} 162 163\begin{itemize} 164\item \textbf{Upper rectangles} (overestimate) vs. \textbf{lower rectangles} (underestimate) 165\item Rotate (invert) graph to make it easier, e.g. $y=\sqrt{x}\longrightarrow x=y^2$ 166\end{itemize} 167 168\begin{tcolorbox}[title=Key points] 169\begin{itemize} 170\item For \textit{an} antiderivative, \qquad $+c \quad \forall \> c \in \mathbb{R}$ \qquad is also acceptable 171\item Practice multi-part problems e.g: 172\begin{enumerate}[label={\alph*)}] 173\item Let $f:\mathbb{R}\rightarrow\mathbb{R},\quad f(x)=x\sin x$. Find $f^\prime(x)$. 174\item Use the result of (a) to find the value of $\int^{\frac{\pi}{2}}_{\frac{\pi}{6}} x \cos x \> dx$ in the form $a\pi + b$. 175\end{enumerate} 176\end{itemize} 177\end{tcolorbox} 178 179\section{Probability} 180 181 \[\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) \] 182 \[\Pr(A \cup B) = 0\tag{mutually exclusive} \] 183 184\subsection{Conditional probability} 185 186 \[\Pr(A|B)=\dfrac{\Pr(A \cap B)}{\Pr(B)} \] 187 \[\Pr(A \cap B) = \Pr(A|B) \times \Pr(B) \tag{multiplication theorem} \] 188 \[\Pr(A \cap B) = \Pr(A) \times \Pr(B) \tag{independent events} \] 189 190\subsection{Discrete random distributions} 191 192 Any experiment or activity involving chance will have a probability associated with each result or \textit{outcome}. If the outcomes have a reference to \textbf{discrete numeric values} (outcomes that can be counted), and the result is unknown, then the activity is a \textit{discrete random probability distribution}. 193 194\subsubsection{Discrete probability distributions} 195 196 If an activity has outcomes whose probability values are all positive and less than one ($\implies0\le p(x) \le1$), and for which the sum of all outcome probabilities is unity ($\implies \sum p(x) = 1$), then it is called a \textit{probability distribution} or \textit{probability mass} function. 197 198\begin{itemize} 199\item \textbf{Probability distribution graph} - a series of points on a cartesian axis representing results of outcomes. $\Pr(X=x)$ is on $y$-axis, $x$ is on $x$ axis. 200\item \textbf{Mean $\mu$} - measure of central tendency. \textit{Balance point} or \textit{expected value} of a distribution. Centre of a symmetrical distribution. 201\item \textbf{Variance $\sigma^2$} - measure of spread of data around the mean. Not the same magnitude as the original data. Represented by $\sigma^2=\operatorname{Var}(x) = \sum (x=\mu)^2\times p(x) = \sum (x-\mu)^2\times \Pr(X=x)$. Alternatively: $\sigma^2 = \operatorname{Var}(X) = \sum x^2\times p(x) - \mu^2$ 202\item \textbf{Standard deviation $\sigma$} - measure of spread in the original magnitude of the data. Found by taking square root of the variance: $\sigma =\operatorname{sd}(X)=\sqrt{\operatorname{Var}(X)}$ 203\end{itemize} 204 205\subsection{Binomial distribution (Bernoulli trials)} 206 207 A type of discrete probability distribution. This distribution has the following characteristics: 208 209\begin{enumerate} 210\item Samples are taken from a population size that remains constant (\textit{sampling with replacement}) 211\item Every result or trial can be classed as either a \textit{success} or \textit{failure} 212\item The probability of a succcess is the same from one trial to the next, notated by $p$ 213\item The probability of a failure is the complement of the probability of a success, notated by $1-p$ 214\item There are a finite number of trials that define the sample size, notated by $n$ 215\end{enumerate} 216 217\subsubsection{Bernoulli trials} 218 219 Same properties as above. Number of successes in a finite number of Bernoulli trials is defined as the \textbf{binomial distribution}. The distribution can take the form: 220 \[X \sim \operatorname{Bi}(n,p) \] 221 222 Then, the probability values for each value of $X$ follow the rule: 223 \[ p(x) = {n \choose x}(p)^x(1-p)^{n-x} \] 224 225\subsection{Continuous random distributions} 226 227 If the outcomes of an activity have a reference to \textit{continuous numeric} values (outcomes that can be measured), then the activity is associated with a \textbf{continuous probability distribution}. The probabilities are calculuated by finding the area under the graph between the required $x$ values (integrate). 228 229 The probability of a single \textit{outcome value} does not exist for continuous probability distributions. 230 231\subsection{Continuous probability distributions} 232 233 If an experiment or activity has a \textbf{function} whose values are all positive ($\implies f(x) \ge0\forall x$), and for which the area under the graph between the lowest outcome value and the greatest outcome value is unity ($\implies \int^{\text{upper}}_{\text{lower}} f(x) \ dx = 1$), then it is called a \textbf{probability density function}. 234 235 Example probability density function: $f(x)=\begin{cases}k(9-x^2), & 0\le x \le3\\0, &\text{elsewhere}\end{cases}$ 236 237\subsection{Normal distributions} 238 239 A very specific and special continuous probability distribution. Characteristics: 240\begin{itemize} 241\item Many sets of data occurring naturally and taken randomly will have a normal distribution 242\item No single outcome value can be calculated 243\item Probabilities are found between certain outcome values of the distribution 244\item The values of the distribution are symmetrical around the mean ($\mu$) and form a bell-shaped curve 245\item The distribution is best described using its central or mean value, $\mu$, and its measure of spread, $\sigma$ 246\item The distribution can take the form $X\sim N(\mu, \sigma^2)$ 247\end{itemize} 248 249\pgfmathdeclarefunction{gauss}{2}{% 250\pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))}% 251} 252\pgfmathdeclarefunction{sndist}{0}{% 253\pgfmathparse{(1/sqrt(2*pi))*exp((-x^2)/2)}% 254} 255 256\begin{figure} 257\begin{center} 258\begin{tikzpicture} 259\begin{axis}[every axis plot post/.append style={ 260 mark=none,domain=-2:3,samples=50,smooth}, % All plots: from -2:2, 50 samples, smooth, no marks 261 axis x line=bottom, % no box around the plot, only x and y axis 262 axis y line=left, % the * suppresses the arrow tips 263 enlargelimits=upper]% extend the axes a bit to the right and top 264\addplot{gauss(0,0.5)}; 265\addplot[mark=*, blue] coordinates {(-1,0.4)} node[text width=1cm, font=\footnotesize]{$\mu=0$ \\ $\sigma=0.5$}; 266\addplot[mark=*, red] coordinates {(2.5,0.4)} node[text width=2cm, font=\footnotesize]{$\mu=1$ \\ $\sigma=0.75$}; 267\addplot{gauss(1,0.75)}; 268\end{axis} 269\end{tikzpicture} 270\end{center} 271\caption{Two \textit{general} normal distributions} 272\end{figure} 273 274\begin{tabularx}{\textwidth}{X|X} 275\hline 276\begin{center}General normal distribution\end{center} & \begin{center}Standard normal distribution\end{center} \\ \hline 277 \[ f(x) = \dfrac{1}{\sigma \sqrt{2\pi}}e^{-\frac{1}{2}\left(\dfrac{x-\mu}{\sigma}\right)^2} \] & \[ f(x) = \dfrac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2} \] \\ \hline 278\begin{tikzpicture} 279\begin{axis}[xtick={-2,0,2}, xticklabels={$\mu-3\sigma$,$\mu$,$\mu+3\sigma$}, every axis plot post/.append style={mark=none,domain=-3:3,samples=50,smooth}, % All plots: from -2:2, 50 samples, smooth, no marks 280 axis x line=bottom, % no box around the plot, only x and y axis 281 axis y line=none, % the * suppresses the arrow tips 282 enlargelimits=upper]% extend the axes a bit to the right and top 283\addplot[orange] {gauss(0,0.75)}; 284\end{axis} 285\end{tikzpicture} 286 & 287\begin{tikzpicture} 288\begin{axis}[every axis plot post/.append style={mark=none,domain=-4:4,samples=50,smooth}, % All plots: from -2:2, 50 samples, smooth, no marks 289 axis x line=bottom, % no box around the plot, only x and y axis 290 axis y line=none, % the * suppresses the arrow tips 291 enlargelimits=upper]% extend the axes a bit to the right and top 292\addplot[purple] {sndist}; 293\end{axis} 294\end{tikzpicture} 295 \\ \hline 296\end{tabularx} 297 298\end{document}