1# Antidifferentiation
23
If $F'(x)=f(x)$, then $\int f(x) \cdot dx = F(x) + c$
45
$$\int x^n \cdot dx = {x^{n+1} \over {n+1}} + c, \quad n \in \mathbb{N} \cup \{0\}$$
67
Rules:
89
$\int [f(x) \pm g(x)] \cdot dx = \int f(x) \cdot dx \pm \int g(x) \cdot dx$
10$\int kf(x) \cdot dx = k \int f(x) \cdot dx$, where $k \in \mathbb{R}$
1112
## Applications of differentiation to kinematics
1314
Kinematics - straight line motion of a particle
1516
Instantaneous velocity - dx/dt