1# Circular functions
2
3## Radians and degrees
4
5$$1 \thinspace \operatorname{rad}={{180 \operatorname{deg}}\over \pi}$$
6
7## Exact values
8
9## $\sin$ and $\cos$ graphs
10
11$$f(x)=a \sin(bx-c)+d$$
12$$f(x)=a \cos(bx-c)+d$$
13
14where
15$a$ is the $y$-dilation (amplitude)
16$b$ is the $x$-dilation (period)
17$c$ is the $x$-shift (phase)
18$d$ is the $y$-shift (equilibrium position)
19
20Domain is $\mathbb{R}$
21Range is $[-b+c, b+c]$;
22
23Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$.
24
25### Amplitude
26
27Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis
28
29$a=0$ produces straight line
30$a\lt0$ inverts the phase ($\sin$ becomes $\cos$, vice vera)
31
32### Period
33
34Period $T$ is ${2 \pi}\over b$
35$b=0$ produces straight line
36$b\lt0$ inverts the phase
37
38### Phase
39
40$c$ moves the graph left-right in the $x$ axis.
41If $c=T={{2\pi}\over b}$, the graph has no actual phase shift.
42
43## Symmetry
44
45$$\sin(\theta+{\pi\over 2})=\sin\theta$$
46$$\sin(\theta+\pi)=-\sin\theta$$
47
48$$\cos(\theta+{\pi \over 2})=-\cos\theta$$
49$$\cos(\theta+\pi)=-cos(\theta+{3\pi \over 2})=\cos(-\theta)$$
50
51## Pythagorean identity
52
53$$\cos^2\theta+\sin^2\theta=1$$
54
55## Complementary relationships
56
57$$\sin({\pi \over 2} - \theta)=\cos\theta$$
58$$\cos({\pi \over 2} - \theta)=\sin\theta$$
59
60$$\sin\theta=-\cos(\theta+{\pi \over 2})$$
61$$\cos\theta=\sin(\theta+{\pi \over 2})$$
62
63## $tan$ graph
64
65$$y=a\tan(nx)$$
66
67where
68$a$ is $x$-dilation (period)
69$n$ is $y$-dilation ($\equiv$ amplitude)
70period $T$ is $\pi \over n$
71range is $R$
72roots at $x={k\pi \over n}$
73asymptotes at $x={{(2k+1)\pi}\over 2},\quad k \in \mathbb{Z}$