methods / calculus-ref.mdon commit [methods] strictly increasing and tangents (9d6c5c6)
   1---
   2geometry: margin=2cm
   3<!-- columns: 2 -->
   4graphics: yes
   5tables: yes
   6author: Andrew Lorimer
   7---
   8
   9
  10\pagenumbering{gobble}
  11
  12
  13# Methods - Calculus
  14
  15## Average rate of change
  16
  17$$m \operatorname{of} x \in [a,b] = {{f(b)-f(a)}\over {b - a}} = {dy \over dx}$$
  18
  19Average rate of change between $x=[a,b]$ given two points $P(a, f(a))$ and $Q(b, f(b))$ is the gradient $m$ of line $\overleftrightarrow{PQ}$
  20
  21On CAS: (Action|Interactive) -> Calculation -> Diff -> $f(x)$ or $y=\dots$
  22
  23## Instantaneous rate of change
  24
  25Secant - line passing through two points on a curve  
  26Chord - line segment joining two points on a curve
  27
  28Estimated by using two given points on each side of the concerned point. Evaluate as in average rate of change.
  29
  30## Limits & continuity
  31
  32### Limit theorems
  33
  341. For constant function $f(x)=k$, $\lim_{x \rightarrow a} f(x) = k$
  352. $\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G$
  363. $\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G$
  374. ${\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0$
  38
  39A function is continuous if $L^-=L^+=f(x)$ for all values of $x$.
  40
  41## First principles derivative
  42
  43$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$
  44
  45Not differentiable at:
  46
  47- discontinuous points
  48- sharp point/cusp
  49- vertical tangents ($\infty$ gradient)
  50
  51## Tangents & gradients
  52
  53**Tangent line** - defined by $y=mx+c$ where $m={dy \over dx}$  
  54**Normal line** - $\perp$ tangent ($m_{\operatorname{tan}} \cdot m_{\operatorname{norm}} = -1$)  
  55**Secant** $={{f(x+h)-f(x)} \over h}$
  56
  57$$\tan \Theta = m = f^\prime x$$
  58
  59where $\Theta$ is the angle that tangent line makes with +ve direction of $x$-axis
  60
  61## Strictly increasing
  62
  63- Function $f$ is **strictly increasing** where $f(x_2) > f(x_1)$ and $x_2 > x_1$
  64- Function $f$ is **strictly decreasing** where $f(x_2) < f(x_1)$ and $x_2 > x_1$
  65- If $f^\prime (x) > 0$ for all $x$ in interval, then $f$ is **strictly increasing**
  66- If $f^\prime(x) < 0$ for all $x$ in interval, then $f$ is **strictly decreasing**
  67- Endpoints are included, even where gradient $=0$
  68
  69### Solving on CAS
  70
  71**In main**: type function. Interactive -> Calculation -> Line -> (Normal | Tan line)  
  72**In graph**: define function. Analysis -> Sketch -> (Normal | Tan line). Type $x$ value to solve for a point. Return to show equation for line.
  73
  74## Stationary points
  75
  76Stationary where $m=0$.  
  77Find derivative, solve for ${dy \over dx} = 0$
  78
  79![](https://cdn.edjin.com/upload/RESOURCE/IMAGE/78444.png){#id .class width=20%}
  80
  81**Local maximum at point $A$**  
  82- $f^\prime (x) > 0$ left of $A$
  83- $f^\prime (x) < 0$ right of $A$
  84
  85**Local minimum at point $B$**  
  86- $f^\prime (x) < 0$ left of $B$
  87- $f^\prime (x) > 0$ right of $B$
  88
  89**Stationary** point of inflection at $C$
  90
  91## Function derivatives
  92
  93
  94| $f(x)$ | $f^\prime(x)$ |
  95| ------ | ------------- |
  96| $x^n$  | $nx^{n-1}$ |
  97| $kx^n$ | $knx^{n-1}$ |
  98| $g(x) + h(x)$ | $g^\prime (x) + h^\prime (x)$ |
  99| $c$    | $0$ |
 100| ${u \over v}$ | ${{v{du \over dx} - u{dv \over dx}} \over v^2}$ |
 101| $uv$ | $u{dv \over dx} + v{du \over dx}$ |
 102| $f \circ g$ | ${dy \over du} \cdot {du \over dx}$ |
 103