spec / spec-collated.texon commit [spec] compile vectors notes (9f1619c)
   1\documentclass[a4paper]{article}
   2\usepackage[a4paper,margin=2cm]{geometry}
   3\usepackage{multicol}
   4\usepackage{multirow}
   5\usepackage{amsmath}
   6\usepackage{amssymb}
   7\usepackage{harpoon}
   8\usepackage{tabularx}
   9\usepackage[dvipsnames, table]{xcolor}
  10\usepackage{graphicx}
  11\usepackage{wrapfig}
  12\usepackage{tikz}
  13\usepackage{tikz-3dplot} 
  14\usetikzlibrary{calc}
  15\usetikzlibrary{angles}
  16\usepgflibrary{arrows.meta}
  17\usepackage{fancyhdr}
  18\pagestyle{fancy}
  19\fancyhead[LO,LE]{Year 12 Specialist}
  20\fancyhead[CO,CE]{Andrew Lorimer}
  21
  22\usepackage{mathtools}
  23\usepackage{xcolor} % used only to show the phantomed stuff
  24\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
  25\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
  26\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
  27\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
  28\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}%
  29\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}%
  30\definecolor{cas}{HTML}{e6f0fe}
  31\linespread{1.5}
  32\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
  33
  34\begin{document}
  35
  36\begin{multicols}{2}
  37
  38  \section{Complex numbers}
  39
  40    \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\]
  41
  42    \begin{align*}
  43      \text{Cartesian form: } & a+bi\\
  44      \text{Polar form: } & r\operatorname{cis}\theta
  45    \end{align*}
  46
  47    \subsection*{Operations}
  48
  49\definecolor{shade1}{HTML}{ffffff}
  50\definecolor{shade2}{HTML}{e6f2ff}
  51  \definecolor{shade3}{HTML}{cce2ff}
  52      \begin{tabularx}{\columnwidth}{r|X|X}
  53        & \textbf{Cartesian} & \textbf{Polar} \\
  54        \hline
  55        \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\
  56        \hline
  57        \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\
  58        \cline{1-1}\cline{3-3}
  59        \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\
  60        \hline
  61        \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\
  62        \hline
  63        \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\)
  64      \end{tabularx}
  65
  66      \subsubsection*{Scalar multiplication in polar form}
  67      
  68        For \(k \in \mathbb{R}^+\):
  69        \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\]
  70
  71        \noindent For \(k \in \mathbb{R}^-\):
  72        \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\]
  73
  74    \subsection*{Conjugate}
  75
  76      \begin{align*}
  77        \overline{z} &= a \mp bi\\
  78        &= r \operatorname{cis}(-\theta)
  79      \end{align*}
  80
  81      \noindent \colorbox{cas}{On CAS: \texttt{conjg(a+bi)}}
  82
  83      \subsubsection*{Properties}
  84
  85        \begin{align*}
  86          \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\
  87          \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\
  88          \overline{kz} &= k\overline{z} \quad | \quad k \in \mathbb{R}\\
  89          z\overline{z} &= (a+bi)(a-bi)\\
  90          &= a^2 + b^2\\
  91          &= |z|^2
  92        \end{align*}
  93
  94    \subsection*{Modulus}
  95
  96      \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\]
  97
  98      \subsubsection*{Properties}
  99
 100        \begin{align*}
 101          |z_1z_2|&=|z_1||z_2|\\
 102          \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\
 103          |z_1+z_2|&\le|z_1|+|z_2|
 104        \end{align*}
 105
 106    \subsection*{Multiplicative inverse}
 107
 108      \begin{align*}
 109        z^{-1}&=\frac{a-bi}{a^2+b^2}\\
 110        &=\frac{\overline{z}}{|z|^2}a\\
 111        &=r \operatorname{cis}(-\theta)
 112      \end{align*}
 113
 114    \subsection*{Dividing over \(\mathbb{C}\)}
 115
 116      \begin{align*}
 117        \frac{z_1}{z_2}&=z_1z_2^{-1}\\
 118        &=\frac{z_1\overline{z_2}}{|z_2|^2}\\
 119        &=\frac{(a+bi)(c-di)}{c^2+d^2}\\
 120        & \qquad \text{(rationalise denominator)}
 121      \end{align*}
 122
 123    \subsection*{Polar form}
 124
 125      \begin{align*}
 126        z&=r\operatorname{cis}\theta\\
 127        &=r(\cos \theta + i \sin \theta)
 128      \end{align*}
 129
 130      \begin{itemize}
 131        \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)}
 132        \item{\(\theta = \operatorname{arg}(z)\) \quad \colorbox{cas}{On CAS: \texttt{arg(a+bi)}}}
 133        \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}}
 134        \item{\colorbox{cas}{Convert on CAS:}\\ \verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|}
 135        \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions}
 136        \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)}
 137      \end{itemize}
 138
 139    \subsection*{de Moivres' theorem}
 140
 141    \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
 142
 143    \subsection*{Complex polynomials}
 144    
 145      Include \(\pm\) for all solutions, incl. imaginary
 146
 147      \begin{tabularx}{\columnwidth}{ R{0.55} X  }
 148        \hline
 149        Sum of squares & \(\begin{aligned} 
 150        z^2 + a^2 &= z^2-(ai)^2\\
 151        &= (z+ai)(z-ai) \end{aligned}\) \\
 152        \hline
 153        Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
 154        \hline
 155        Division & \(P(z)=D(z)Q(z)+R(z)\) \\
 156        \hline
 157        Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
 158        \hline
 159        Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\
 160        \hline
 161        Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)
 162      \end{tabularx}
 163
 164    \subsection*{Roots}
 165
 166      \(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
 167
 168      \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
 169
 170      \begin{itemize}
 171
 172        \item{Same modulus for all solutions}
 173        \item{Arguments are separated by \(\frac{2\pi}{n}\)}
 174        \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))}
 175      \end{itemize}
 176
 177      \noindent For \(0=az^2+bz+c\), use quadratic formula:
 178
 179      \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
 180
 181    \subsection*{Fundamental theorem of algebra}
 182
 183      A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\):
 184
 185        \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\]
 186        \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\]
 187
 188    \subsection*{Argand planes}
 189    
 190      \begin{center}\begin{tikzpicture}[scale=2]
 191        \draw [->] (-0.2,0) -- (1.5,0) node [right]  {$\operatorname{Re}(z)$};
 192        \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$};
 193        \coordinate (P) at (1,1);
 194        \coordinate (a) at (1,0);
 195        \coordinate (b) at (0,1);
 196        \coordinate (O) at (0,0);
 197        \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)};
 198        \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)};
 199        \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)};
 200        \begin{scope}
 201          \path[clip] (O) -- (P) -- (a);
 202          \fill[red, opacity=0.5, draw=black] (O) circle (2mm);
 203          \node at ($(O)+(20:3mm)$) {$\theta$};
 204        \end{scope}
 205        \filldraw (P) circle (0.5pt);
 206      \end{tikzpicture}\end{center}
 207
 208      \begin{itemize}
 209        \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)}
 210        \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}}
 211      \end{itemize}
 212
 213    \subsection*{Sketching complex graphs}
 214      
 215      \subsubsection*{Linear}
 216
 217        \begin{itemize}
 218          \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
 219          \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
 220          \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)}
 221        \end{itemize}
 222
 223      \subsubsection*{Circles}
 224
 225        \begin{itemize}
 226          \item \(|z-z_1|^2=c^2|z_2+2|^2\)
 227          \item \(|z-(a+bi)|=c\)
 228        \end{itemize}
 229
 230      \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\)
 231
 232        \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
 233          \draw [->] (0,0) -- (1,0) node [right]  {$\operatorname{Re}(z)$};
 234          \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$};
 235          \draw [<-, dashed, thick, blue] (-1,0) -- (0,0);
 236          \draw [->, thick, blue] (0,0) -- (1,1);
 237          \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle;
 238          \begin{scope}
 239            \path[clip] (0,0) -- (1,1) -- (1,0);
 240            \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm);
 241            \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$};
 242          \end{scope}
 243          \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)};
 244          \node [blue, mydot] {};
 245        \end{tikzpicture}\end{center}
 246
 247      \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\)
 248
 249        \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
 250          \draw [->] (-0.75,0) -- (1.5,0) node [right]  {$\operatorname{Re}(z)$};
 251          \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$};
 252          \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1);
 253          \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)};
 254          \begin{scope}
 255            \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0);
 256            \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm);
 257          \end{scope}
 258          \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)};
 259          \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)};
 260          \node [brown, mydot] at (-0.25,0) {};
 261          \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)};
 262          \node [left, font=\footnotesize] at (0,-1) {\(-1\)};
 263          \node [below, font=\footnotesize] at (1,0) {\(1\)};
 264        \end{tikzpicture}\end{center}
 265
 266    \section{Vectors}
 267\begin{center}\begin{tikzpicture}
 268  \draw [->] (-0.5,0) -- (3,0) node [right]  {\(x\)};
 269          \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)};
 270          \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)};
 271         \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
 272        \draw [gray, dashed, thick] (0.5,0.5) -- (2.5,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, below]{\(x\vec{i}\)};
 273        \draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow};
 274         \end{scope}
 275        \node[black, right] at (2.5,1.5) {\(y\vec{j}\)};
 276
 277\end{tikzpicture}\end{center}
 278
 279\subsection*{Column notation}
 280
 281\[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\]
 282\(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\)
 283
 284\subsection*{Scalar multiplication}
 285
 286\[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\]
 287
 288\noindent For \(k \in \mathbb{R}^-\), direction is reversed
 289
 290\subsection*{Vector addition}
 291\begin{center}\begin{tikzpicture}[scale=1]
 292          \coordinate (A) at (0,0);
 293          \coordinate (B) at (2,2);
 294          \draw [->, thick, red] (0,0) -- (2,2) node [pos=0.5, below right] {\(\vec{u}=2\vec{i}+2\vec{j}\)};
 295          \draw [->, thick, blue] (2,2) -- (1,4) node [pos=0.5, above right] {\(\vec{v}=-\vec{i}+2\vec{j}\)};
 296          \draw [->, thick, orange] (0,0) -- (1,4) node [pos=0.5, left] {\(\vec{u}+\vec{v}=\vec{i}+4\vec{j}\)};
 297\end{tikzpicture}\end{center}
 298
 299\[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\]
 300
 301\begin{itemize}
 302  \item Draw each vector head to tail then join lines
 303  \item Addition is commutative (parallelogram)
 304  \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v})\)
 305\end{itemize}
 306
 307\subsection*{Magnitude}
 308
 309\[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\]
 310
 311\subsection*{Parallel vectors}
 312
 313\[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
 314
 315For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
 316\[\boldsymbol{a \cdot b}=\begin{cases}
 317|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
 318-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
 319\end{cases}\]
 320%\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg}
 321%\includegraphics[width=1]{graphics/vector-subtraction.jpg}
 322
 323\subsection*{Perpendicular vectors}
 324
 325\[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\]
 326
 327\subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)}
 328\[\begin{split}\hat{\boldsymbol{a}} & = {1 \over {|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\]
 329
 330  \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)}
 331
 332
 333\begin{center}\begin{tikzpicture}[scale=2]
 334  \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)};
 335  \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)};
 336          \begin{scope}
 337            \path[clip] (1,0.5) -- (1,0) -- (0,0);
 338            \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
 339            \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
 340          \end{scope}
 341\end{tikzpicture}\end{center}
 342\begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\  &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*}
 343\noindent\colorbox{cas}{On CAS: \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}}
 344
 345\subsubsection*{Properties}
 346
 347\begin{enumerate}
 348\item
 349  \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\)
 350\item
 351  \(\boldsymbol{a \cdot 0}=0\)
 352\item
 353  \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\)
 354\item
 355  \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
 356\item
 357  \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\)
 358\item
 359  \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
 360\end{enumerate}
 361
 362\subsection*{Angle between vectors}
 363
 364\[\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}\]
 365
 366\noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])}
 367
 368(Action \(\rightarrow\) Vector \(\rightarrow\)Angle)
 369
 370\subsection*{Angle between vector and axis}
 371
 372\noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
 373which makes angles \(\alpha, \beta, \gamma\) with positive side of
 374\(x, y, z\) axes:
 375\[\cos \alpha = {a_1 \over |\boldsymbol{a}|}, \quad \cos \beta = {a_2 \over |\boldsymbol{a}|}, \quad \cos \gamma = {a_3 \over |\boldsymbol{a}|}\]
 376
 377\noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle
 378between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
 379\(x\)-axis
 380
 381\subsection*{Projections \& resolutes}
 382
 383\begin{tikzpicture}[scale=3]
 384  \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)};
 385  \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)};
 386  \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)};
 387          \begin{scope}
 388            \path[clip] (1,0.5) -- (1,0) -- (0,0);
 389            \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
 390            \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
 391          \end{scope}
 392         \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
 393        \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)};
 394          \end{scope}
 395\draw (0,0) coordinate (O)
 396  (1,0) coordinate (A)
 397  (1,0.5) coordinate (B)
 398  pic [draw,red,angle radius=2mm] {right angle = O--A--B};
 399\end{tikzpicture}
 400
 401\subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)}
 402\begin{align*}
 403  \boldsymbol{u}&={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}\\
 404  &=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)\\
 405  &=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
 406\end{align*}
 407
 408\subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)}
 409\[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\]
 410
 411\subsubsection*{\(|\boldsymbol{u}|\) (scalar resolute)}
 412\begin{align*}
 413  r_s &= |\boldsymbol{u}|\\
 414  &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\
 415  &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}
 416\end{align*}
 417
 418\subsubsection*{Rectangular (\(\parallel,\perp\)) components}
 419
 420\[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\]
 421
 422
 423\subsection*{Vector proofs}
 424
 425\textbf{Concurrent:} intersection of \(\ge\) 3 lines
 426
 427\begin{tikzpicture}
 428  \draw [blue] (0,0) -- (1,1);
 429  \draw [red] (1,0) -- (0,1);
 430  \draw [brown] (0.4,0) -- (0.6,1);
 431        \filldraw (0.5,0.5) circle (2pt);
 432\end{tikzpicture}
 433
 434\subsubsection*{Collinear points}
 435
 436\(\ge\) 3 points lie on the same line
 437
 438\begin{tikzpicture}
 439  \draw [purple] (0,0) -- (4,1);
 440  \filldraw (2,0.5) circle (2pt) node [above] {\(C\)};
 441  \filldraw (1,0.25) circle (2pt) node [above] {\(A\)};
 442  \filldraw (3,0.75) circle (2pt) node [above] {\(B\)};
 443  \coordinate (O) at (2.8,-0.2);
 444  \node at (O) [below] {\(O\)}; 
 445         \begin{scope}[->, orange, thick] 
 446           \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)};
 447           \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)};
 448           \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)};
 449         \end{scope}
 450\end{tikzpicture}
 451
 452\begin{align*}
 453  \text{e.g. Prove that}\\
 454  \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\
 455  \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\
 456  &= \overrightharp{OA} + m\overrightharp{AB}\\
 457  &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\
 458  &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\
 459  &=(1-m)\boldsymbol{a}+m{b}
 460\end{align*}
 461
 462\begin{align*}
 463  \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\
 464  \text{where } \lambda + \mu &= 1\\
 465  \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1
 466\end{align*}
 467
 468
 469  \subsubsection*{Useful vector properties}
 470
 471\begin{itemize}
 472\item
 473  If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel, then
 474  \(\boldsymbol{b}=k\boldsymbol{a}\) for some
 475  \(k \in \mathbb{R} \setminus \{0\}\)
 476\item
 477  If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
 478  least one point in common, then they lie on the same straight line
 479\item
 480  Two vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are
 481  perpendicular if \(\boldsymbol{a} \cdot \boldsymbol{b}=0\)
 482\item
 483  \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
 484\end{itemize}
 485
 486\subsection*{Linear dependence}
 487
 488Vectors \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly
 489dependent if they are non-parallel and:
 490
 491\[k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0\]
 492\[\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}\]
 493
 494\(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
 495independent if no vector in the set is expressible as a linear
 496combination of other vectors in set, or if they are parallel.
 497
 498Vector \(\boldsymbol{w}\) is a linear combination of vectors
 499\(\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}\)
 500
 501\subsection*{Three-dimensional vectors}
 502
 503Right-hand rule for axes: \(z\) is up or out of page.
 504
 505\tdplotsetmaincoords{60}{120} 
 506\begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick}, 
 507vector/.style={-stealth,red,very thick}, 
 508vector guide/.style={dashed,gray,thick}]
 509
 510%standard tikz coordinate definition using x, y, z coords
 511\coordinate (O) at (0,0,0);
 512
 513%tikz-3dplot coordinate definition using x, y, z coords
 514
 515\pgfmathsetmacro{\ax}{1}
 516\pgfmathsetmacro{\ay}{1}
 517\pgfmathsetmacro{\az}{1}
 518
 519\coordinate (P) at (\ax,\ay,\az);
 520
 521%draw axes
 522\draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
 523\draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
 524\draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
 525
 526%draw a vector from O to P
 527\draw[vector] (O) -- (P);
 528
 529%draw guide lines to components
 530\draw[vector guide]         (O) -- (\ax,\ay,0);
 531\draw[vector guide] (\ax,\ay,0) -- (P);
 532\draw[vector guide]         (P) -- (0,0,\az);
 533\draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
 534\draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
 535\draw[vector guide] (\ax,\ay,0) -- (\ax,0,0);
 536\node[tdplot_main_coords,above right]
 537at (\ax,\ay,\az){(\ax, \ay, \az)};
 538\end{tikzpicture}\end{center}
 539
 540\subsection*{Parametric vectors}
 541
 542Parametric equation of line through point \((x_0, y_0, z_0)\) and
 543parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
 544
 545\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation}
 546
 547
 548  \end{multicols}
 549\end{document}