1\documentclass[methods-collated.tex]{subfiles}
2
3\begin{document}
4
5\section{Calculus}
6
7\subsection*{Average rate of change}
8
9\[m \operatorname{of} x \in [a,b] = \dfrac{f(b)-f(a)}{b - a} = \frac{dy}{dx}\]
10
11\colorbox{cas}{On CAS:} Action \(\rightarrow\) Calculation
12\(\rightarrow\) \texttt{diff}
13
14\subsection*{Average value}
15
16\[ f_{\text{avg}} = \dfrac{1}{b-a} \int^b_a f(x) \> dx \]
17
18\subsection*{Instantaneous rate of change}
19
20\textbf{Secant} - line passing through two points on a curve\\
21\textbf{Chord} - line segment joining two points on a curve
22
23\subsection*{Limit theorems}
24
25\begin{enumerate}
26 \def\labelenumi{\arabic{enumi}.}
27 \tightlist
28 \item For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
29 \item \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
30 \item \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
31 \item \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
32\end{enumerate}
33
34A function is continuous if \(L^-=L^+=f(x)\) for all values of \(x\).
35
36\subsection*{First principles derivative}
37
38\[f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}\]
39
40Not differentiable at:
41\begin{itemize}
42 \tightlist
43 \item discontinuous points
44 \item sharp point/cusp
45 \item vertical tangents (\(\infty\) gradient)
46\end{itemize}
47
48\subsection*{Tangents \& gradients}
49
50\textbf{Tangent line} - defined by \(y=mx+c\) where
51\(m={dy \over dx}\)\\
52\textbf{Normal line} - \(\perp\) tangent
53(\(m_{{tan}} \cdot m_{\operatorname{norm}} = -1\))\\
54\textbf{Secant} \(={{f(x+h)-f(x)} \over h}\)
55
56\begin{cas}
57 \textbf{In main}: Interactive \(\rightarrow\) Calculation \(\rightarrow\) Line \\
58 \-\hspace{1em} \texttt{tanLine(f(x), x, p)} \\
59 \-\hspace{1em} \texttt{normal(f(x), x, p)} \\
60 where \texttt{p} is the \(x\)-value of the coordinate
61
62 \textbf{In graph}: define function, then Analysis \(\rightarrow\) Sketch \(\rightarrow\) (Normal \textbar{} Tan line). Type \(x\) value to solve for a point. Return to show equation for line.
63\end{cas}
64
65\subsection*{Strictly increasing/decreasing}
66
67For \(x_2\) and \(x_1\) where \(x_2 > x_1\):
68
69\begin{itemize}
70 \tightlist
71 \item \textbf{strictly increasing}\\ where \(f(x_2) > f(x_1)\) or \(f^\prime(x)>0\)
72 \item \textbf{strictly decreasing}\\ where \(f(x_2) < f(x_1)\) or \(f^\prime(x)<0\)
73 \item Endpoints are included, even where gradient \(=0\)
74\end{itemize}
75
76\subsection*{Stationary points}
77
78\begin{align*}
79 \textbf{Stationary point:} && f^\prime(x) &= 0 \\
80 \textbf{Point of inflection:} && f^{\prime\prime} &= 0
81\end{align*}
82
83\begin{tikzpicture}
84 \begin{axis}[xmin=-21, xmax=21, ymax=1400, ymin=-1000, ticks=none, axis lines=middle]
85 \addplot[color=red, smooth, thick] gnuplot [domain=-15:15,unbounded coords=jump,samples=500] {x^3-3*x^2-144*x+432} node [black, pos=1, right] {\(f(x)\)};
86 \addplot[color=darkgray, dashed, smooth, thick] gnuplot [domain=-15:15,unbounded coords=jump,samples=500] {3*x^2-6*x-144} node [black, pos=1, right] {\(f^\prime(x)\)};
87 \addplot[mark=*, blue] coordinates {(1,286)} node[above right, align=left, font=\footnotesize]{inflection \\ (falling)} ;
88 \addplot[mark=*, orange] coordinates {(-6,972)} node[above left, align=right, font=\footnotesize]{stationary \\ (local max)} ;
89 \addplot[mark=*, orange] coordinates {(8,-400)} node[below, align=left, font=\footnotesize]{stationary \\ (local min)} ;
90 \end{axis}
91\end{tikzpicture}\\
92\begin{tikzpicture}
93 \begin{axis}[enlargelimits=true, xmax=3.5, ticks=none, axis lines=middle]
94 \addplot[color=blue, smooth, thick] gnuplot [domain=0.74:3,unbounded coords=jump,samples=500] {(x-2)^3+2} node [black, pos=0.9, left] {\(f(x)\)};
95 \addplot[color=darkgray, dashed, smooth, thick] gnuplot [domain=1:3,unbounded coords=jump,samples=500] {3*(x-2)^2} node [black, pos=0.9, right] {\(f^\prime(x)\)};
96 \addplot[mark=*, purple] coordinates {(2,2)} node[below right, align=left, font=\footnotesize]{stationary \\ inflection} ;
97 \end{axis}
98\end{tikzpicture}
99
100\include{../spec/calculus-rules}
101
102\end{document}