1\documentclass[a4paper]{article}
2\usepackage[dvipsnames, table]{xcolor}
3\usepackage{adjustbox}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\usepackage{blindtext}
7\usepackage{dblfloatfix}
8\usepackage{enumitem}
9\usepackage{fancyhdr}
10\usepackage[a4paper,margin=1.8cm]{geometry}
11\usepackage{graphicx}
12\usepackage{harpoon}
13\usepackage{keystroke}
14\usepackage{listings}
15\usepackage{makecell}
16\usepackage{mathtools}
17\usepackage{mathtools}
18\usepackage{multicol}
19\usepackage{multirow}
20\usepackage{newclude}
21\usepackage{pgfplots}
22\usepackage{polynom}
23\usepackage{pst-plot}
24\usepackage{standalone}
25\usepackage{subfiles}
26\usepackage{tabularx}
27\usepackage{tabu}
28\usepackage{tcolorbox}
29\usepackage{tikz-3dplot}
30\usepackage{tikz}
31\usepackage{tkz-fct}
32\usepackage[obeyspaces]{url}
33\usepackage{wrapfig}
34
35
36\usetikzlibrary{%
37 angles,
38 arrows,
39 arrows.meta,
40 calc,
41 datavisualization.formats.functions,
42 decorations,
43 decorations.markings,
44 decorations.text,
45 decorations.pathreplacing,
46 decorations.text,
47 patterns,
48 scopes
49}
50
51\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
52
53\usepgflibrary{arrows.meta}
54\pgfplotsset{compat=1.16}
55\pgfplotsset{every axis/.append style={
56 axis x line=middle, % centre axes
57 axis y line=middle,
58 axis line style={->}, % arrows on axes
59 xlabel={$x$}, % axes labels
60 ylabel={$y$}
61}}
62
63\psset{dimen=monkey,fillstyle=solid,opacity=.5}
64\def\object{%
65 \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
66 \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
67 \rput{*0}{%
68 \psline{->}(0,-2)%
69 \uput[-90]{*0}(0,-2){$\vec{w}$}}
70}
71
72\pagestyle{fancy}
73\fancyhead[LO,LE]{Year 12 Methods}
74\fancyhead[CO,CE]{Andrew Lorimer}
75\fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
76
77\newcommand{\tg}{\mathop{\mathrm{tg}}}
78\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
79\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
80\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
81
82\providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
83\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
84\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
85\linespread{1.5}
86\setlength{\parindent}{0cm}
87\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
88
89\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}
90\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}
91\newcolumntype{Y}{>{\centering\arraybackslash}X}
92
93\definecolor{cas}{HTML}{e6f0fe}
94\definecolor{important}{HTML}{fc9871}
95\definecolor{highlight}{HTML}{ffb84d}
96\definecolor{dark-gray}{gray}{0.2}
97\definecolor{peach}{HTML}{e6beb2}
98\definecolor{lblue}{HTML}{e5e9f0}
99
100\newtcolorbox{cas}{colframe=cas!75!black, fonttitle=\sffamily\bfseries, title=On CAS, left*=3mm}
101\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=darkgray, fontupper=\sffamily\bfseries}
102\newtcolorbox{theorembox}[1]{colback=green!10!white, colframe=blue!20!white, coltitle=black, fontupper=\sffamily, fonttitle=\sffamily, #1}
103
104
105\begin{document}
106
107\title{\vspace{-20mm}Year 12 Methods}
108\author{Andrew Lorimer}
109\date{}
110\maketitle
111
112\begin{multicols}{2}
113
114
115\section{Functions}
116
117\begin{itemize} \tightlist
118 \item vertical line test
119 \item each \(x\) value produces only one \(y\) value
120\end{itemize}
121
122\subsection*{One to one functions}
123
124\begin{itemize} \tightlist
125 \item \(f(x)\) is 1:1 if \(f(a) \ne f(b) \> \forall \>\{a,b\} \in \operatorname{dom}(f)\) \\
126 \(\implies\) unique \(y\) for each \(x\)
127 \item e.g. \(\sin x\) is not 1:1, \(x^3\) is
128 \item horizontal line test
129 \item if not one to one, it is many to one
130\end{itemize}
131
132\subsection*{Odd and even functions}
133
134\begin{align*}
135 \text{Even:}&& f(x) &= f(-x) \\
136 \text{Odd:} && -f(x) &= f(-x)
137\end{align*}
138
139Even \(\implies\) symmetrical across \(y\)-axis \\
140\(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
141For \(x^n\), parity of \(n \equiv\) parity of function
142
143\begin{tabularx}{\columnwidth}{XX}
144 \textbf{Even:} & \textbf{Odd:} \\
145 \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)}; \end{axis}\end{tikzpicture} &
146 \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)}; \end{axis}\end{tikzpicture}
147\end{tabularx}
148
149\subsection*{Inverse functions}
150
151\begin{itemize} \tightlist
152 \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\)
153 \item \(f\) must be one to one
154 \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
155 \item Represents reflection across \(y=x\)
156 \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\)
157 \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\
158 \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
159 \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\
160\end{itemize}
161
162\subsubsection*{Finding \(f^{-1}\)}
163
164\begin{enumerate} \tightlist
165 \item Let \(y=f(x)\)
166 \item Swap \(x\) and \(y\) (``take inverse''
167 \item Solve for \(y\) \\
168 Sqrt: state \(\pm\) solutions then restrict
169 \item State rule as \(f^{-1}(x)=\dots\)
170 \item For inverse \emph{function}, state in function notation
171\end{enumerate}
172
173\subsection*{Simultaneous equations (linear)}
174
175\begin{itemize} \tightlist
176 \item \textbf{Unique solution} - lines intersect at point
177 \item \textbf{Infinitely many solutions} - lines are equal
178 \item \textbf{No solution} - lines are parallel
179\end{itemize}
180
181\subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions}
182 where all coefficients are known except for one, and \(a, b\) are known
183
184 \begin{enumerate} \tightlist
185 \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}\)
186 \item Find \(\det(\text{first matrix}) = ps-qr\)
187 \item Let \(\det = 0\) for \(\{0,\infty\}\) solutions
188 or \(\det \ne 0\) for 1 solution
189 \item Solve to find variable \\ \\
190 \textbf{For infinite/no solutions:}
191 \item Substitute variable into both original equations
192 \item Rearrange so that LHS of each is the same
193 \item \(\begin{aligned}[t]
194 \infty \text{ solns: } & \text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x \\
195 0 \text{ solns: } & \text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x
196 \end{aligned}\)
197 \end{enumerate}
198
199 \begin{cas}
200 Action \(\rightarrow\) Matrix \(\rightarrow\) Calculation \(\rightarrow\) \texttt{det}
201 \end{cas}
202
203 \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
204
205 \begin{itemize} \tightlist
206 \item Use elimination
207 \item Generate two new equations with only two variables
208 \item Rearrange \& solve
209 \item Substitute one variable into another equation to find another variable
210 \end{itemize}
211
212 \subsection*{Piecewise functions}
213
214 \[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
215
216 \textbf{Open circle:} point included\\
217 \textbf{Closed circle:} point not included
218
219\begin{cas}
220 Define piecewise functions: \\
221 \-\hspace{1em}Math3 \(\rightarrow\)
222 \begin{tikzpicture}%
223 \draw rectangle (0.5,0.5);
224 \node at (0.08,0.25) {\(\{\)};
225 \filldraw [black] (0.15, 0.4) rectangle(0.25, 0.3);
226 \draw (0.35, 0.4) rectangle(0.45, 0.3);
227 \node [font=\footnotesize] at (0.3,0.3) {\verb;,;};
228 \draw (0.15, 0.2) rectangle(0.25, 0.1);
229 \node [font=\footnotesize] at (0.3,0.1) {\verb;,;};
230 \draw (0.35, 0.2) rectangle(0.45, 0.1);
231 \end{tikzpicture}
232 % TODO: finish this section
233\end{cas}
234
235 \subsection*{Operations on functions}
236
237 For \(f \pm g\) and \(f \times g\):
238 \quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
239
240 Addition of linear piecewise graphs: add \(y\)-values at key points
241
242 Product functions:
243
244 \begin{itemize}
245 \tightlist
246 \item
247 product will equal 0 if \(f=0\) or \(g=0\)
248 \item
249 \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
250 \end{itemize}
251
252 \subsection*{Composite functions}
253
254 \((f \circ g)(x)\) is defined iff
255 \(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)
256
257 \pgfplotsset{
258 blank/.append style={%
259 enlargelimits=true,
260 ticks=none,
261 yticklabels={,,}, xticklabels={,,},
262 xlabel=, ylabel=,
263 scale=0.4,
264 samples=100, smooth, unbounded coords=jump
265 }
266 }
267 \tikzset{
268 blankplot/.append style={orange, mark=none}
269 }
270
271 \begin{figure*}[ht]
272 \centering
273
274 \begin{tabularx}{\textwidth}{|r|Y|Y|}
275
276 \hline
277 \rowcolor{lblue}
278 & \(n\) is even & \(n\) is odd \\ \hline
279
280 \centering \(x^n, n \in \mathbb{Z}^+\) &
281
282 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
283 \begin{axis}[blank, xmin=-3, xmax=3]
284 \addplot[blankplot] {(x^2)};
285 \end{axis}
286 \end{tikzpicture}} &
287
288 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
289 \begin{axis}[blank, xmin=-3, xmax=3]
290 \addplot[blankplot, domain=-3:3] {(x^3)};
291 \end{axis}
292 \end{tikzpicture}} \\ \hline
293
294 \centering \(x^n, n \in \mathbb{Z}^-\) &
295
296 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
297 \begin{axis}[blank, xmin=-4, xmax=4, ymax=8, ymin=-0]
298 \addplot[blankplot, samples=100] {(x^(-2))};
299 \end{axis}
300 \end{tikzpicture}} &
301
302 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
303 \begin{axis}[blank, xmin=-3, xmax=3]
304 \addplot[blankplot, domain=-3:-0.1] {(x^(-1))};
305 \addplot[blankplot, domain=0.1:3] {(x^(-1))};
306 \end{axis}
307 \end{tikzpicture}} \\ \hline
308
309 \centering \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
310
311 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
312 \begin{axis}[blank, xmin=-1, xmax=5]
313 \addplot[blankplot] {(x^(1/2))};
314 \end{axis}
315 \end{tikzpicture}} &
316
317 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
318 \begin{axis}[blank, xmin=-3, xmax=3, ymin=-3, ymax=3]
319 \addplot [blankplot, domain=-2:2] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
320 \end{axis}
321 \end{tikzpicture}} \\ \hline
322
323 \end{tabularx}
324 \end{figure*}
325
326 \section{Polynomials}
327
328 \subsection*{Factor theorem}
329
330 \begin{theorembox}{title=General form \(\beta x + \alpha\)}
331 If \(\beta x + \alpha\) is a factor of \(P(x)\), \\
332 \-\hspace{1em}then \(P(-\dfrac{\alpha}{\beta})=0\).
333 \end{theorembox}
334
335 \begin{theorembox}{title=Simple form \(x-a\)}
336 If \((x-a)\) is a factor of \(P(x)\), remainder \(R=0\). \\
337 \-\hspace{1em}\(\implies P(a)=0\)
338 \end{theorembox}
339
340 \subsection*{Remainder theorem}
341
342 \begin{theorembox}{}
343 When \(P(x)\) is divided by \(\beta x + \alpha\), the remainder is \(-\dfrac{\alpha}{\beta}\).
344 \end{theorembox}
345
346 \subsection*{Rational root theorem}
347 Let \(P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0\) be a polynomial of degree \(n\) with \(a_i \in \mathbb{Z} \forall a\). Let \(\alpha, \beta \in \mathbb{Z}\) such that their highest common factor is 1 (i.e. relatively prime).
348
349 If \(\beta x + \alpha\) is a factor of \(P(x)\), then \(\beta\) divides \(a_n\) and \(\alpha\) divides \(a_0\) .
350
351 \subsubsection*{Discriminant}
352 \[\begin{cases}
353 b^2-4ac > 0 & \text{two solutions} \\
354 b^2-4ac = 0 & \text{one solution} \\
355 b^2-4ac < 0 & \text{no solutions}
356 \end{cases}\]
357 \begin{warning}
358 Flip inequality sign when multiplying by -1
359 \end{warning}
360
361 \subsection*{Long division}
362
363 \[ \polylongdiv{x^2+2x+4}{x-1} \]
364
365 \begin{cas}
366 Action \(\rightarrow\) Transformation \(\rightarrow\) \texttt{propFrac}
367 \end{cas}
368
369 \subsection*{Linear equations}
370
371 \subsubsection*{Forms}
372
373 \begin{itemize}
374 \tightlist
375 \item \(y=mx+c\)
376 \item \(\frac{x}{a} + \frac{y}{b}=1\) where \((x_1, y_1)\) lies on the graph
377 \item \(y-y_1 = m(x-x_1)\) where \((a,0)\) and \((0,b)\) are \(x\)- and \(y\)-intercepts
378 \end{itemize}
379
380 \subsubsection*{Line properties}
381
382 Parallel lines: \(m_1 = m_2\)\\
383 Perpendicular lines: \(m_1 \times m_2 = -1\)\\
384 Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
385
386 \subsection*{Quadratics}
387
388 \setlength{\abovedisplayskip}{1pt}
389 \setlength{\belowdisplayskip}{1pt}
390
391 \textbf{Linear factorisation}
392 \[ x^2 + bx + c = (x+m)(x+n) \]
393 \hfill where \(mn=c, \> m+n=b\)
394
395 \textbf{Difference of squares}
396 \[ a^2 - b^2 = (a-b)(a+b) \]
397 \textbf{Perfect squares}
398 \[ a^2 \pm 2ab + b^2 = (a \pm b^2) \]
399 \textbf{Completing the square}
400 \begin{align*}
401 x^2+bx+c &= (x+\frac{b}{2})^2+c-\frac{b^2}{4} \\
402 ax^2+bx+c &= a(x-\frac{b}{2a})^2+c-\frac{b^2}{4a}
403 \end{align*}
404 \textbf{Quadratic formula}
405 \[ x = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} \]
406 \hfill (Discriminant \(\Delta=b^2-4ac\))
407
408 \subsection*{Cubics}
409
410 \textbf{Difference of cubes}
411 \[ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \]
412 \textbf{Sum of cubes}
413 \[ a^3 + b^3 = (a+b)(a^2 - ab + b^2) \]
414 \textbf{Perfect cubes}
415 \[ a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3 \]
416
417 \[ y=a(bx-h)^3 + c \]
418
419 \begin{itemize}
420 \tightlist
421 \item
422 \(m=0\) at \emph{stationary point of inflection}
423 (i.e.~(\({h \over b}, k)\))
424 \item \(y=(x-a)^2(x-b)\) --- max at \(x=a\), min at \(x=b\)
425 \item \(y=a(x-b)(x-c)(x-d)\) --- roots at \(b, c, d\)
426 \item \(y=a(x-b)^2(x-c)\) --- roots at \(b\) (instantaneous), \(c\) (intercept)
427 \end{itemize}
428
429 \subsection*{Quartic graphs}
430
431 \subsubsection*{Forms of quartic equations}
432
433 \(y=ax^4\)\\
434 \(y=a(x-b)(x-c)(x-d)(x-e)\)\\
435 \(y=ax^4+cd^2 (c \ge 0)\)\\
436 \(y=ax^2(x-b)(x-c)\)\\
437 \(y=a(x-b)^2(x-c)^2\)\\
438 \(y=a(x-b)(x-c)^3\)
439
440 \input{transformations}
441 \input{stuff}
442 \input{circ-functions}
443 \input{calculus}
444
445 \subfile{statistics-ref}
446
447 \end{multicols}
448
449\end{document}