1\documentclass[methods-collated.tex]{subfiles} 2 3\begin{document} 4 5\section{Statistics} 6 7\subsection*{Probability} 8 9\begin{align*} 10\Pr(A \cup B) &= \Pr(A) + \Pr(B) - \Pr(A \cap B) \\ 11\Pr(A \cap B) &= \Pr(A|B) \times \Pr(B) \\ 12\Pr(A|B) &= \frac{\Pr(A \cap B)}{\Pr(B)} \\ 13\Pr(A) &= \Pr(A|B) \cdot \Pr(B) + \Pr(A|B^{\prime}) \cdot \Pr(B^{\prime}) 14\end{align*} 15 16Mutually exclusive: \(\Pr(A \cap B) = 0\) \\ 17 18Independent events: 19\begin{flalign*} 20\quad \Pr(A \cap B) &= \Pr(A) \times \Pr(B)& \\ 21\Pr(A|B) &= \Pr(A) \\ 22\Pr(B|A) &= \Pr(B) 23\end{flalign*} 24 25\subsection*{Combinatorics} 26 27\begin{align*} 28\text{Arrangements} && {n \choose k} & = \frac{n!}{(n-k)} \\ 29\text{Combinations} && {n \choose k} & = \frac{n!}{k!(n-k)!} 30\end{align*} 31 32Note \({n \choose k} = {n \choose k-1}\) 33 34\begin{cas} 35 Keyboard \(\rightarrow\) Advance \(\rightarrow\) \keystroke{nCr}/\keystroke{nPr} \\ 36 \-\hspace{1em}\texttt{nCr(n, r)} or \texttt{nPr(n, r)} 37\end{cas} 38 39\subsection*{Distributions} 40 41\begin{tikzpicture} 42\begin{axis}[axis lines=left, 43 ticks=none, 44 xmin=0, 45 ymax=0.5, 46 enlargelimits=upper, 47 ylabel={\(\Pr(X=x)\)}, 48 xlabel={\(x\)}, 49 every axis x label/.style={at={(current axis.right of origin)},anchor=north west}, 50 every axis y label/.style={at={(axis description cs:-0.02,0.5)}, anchor=south west, rotate=90}, 51] 52\fill[pattern=north east lines, pattern color=orange] (0,0) -- plot[domain=0:1.68, samples=50] function {abs(x)*exp(-x)} -- (1.68,0) -- cycle; 53\fill[pattern=north west lines, pattern color=red] (1.68,0) -- plot[domain=1.68:5, samples=50] function {abs(x)*exp(-x)} -- (5,0) -- cycle; 54\draw[dashed, blue, very thick] (axis cs:1.68,0) -- (axis cs:1.68,0.31) node [above, anchor=south west, black] {Median}; 55\draw[dashed, blue, very thick] (axis cs:2,0) -- (axis cs:2,0.27) node [above, anchor=west, black] {Mean}; 56\draw[dashed, blue, very thick] (axis cs:1,0) -- (axis cs:1,0.365) node [above, black] {Mode}; 57\node at (1,0.18) {\textbf{50\%}}; 58\node at (3.1,0.08) {\textbf{50\%}}; 59\addplot[thick, black, no markers, samples=200, domain=0:5] {abs(x)*exp(-x)}; 60\end{axis} 61\end{tikzpicture} 62 63\subsubsection*{Mean \(\mu\)} 64 65\begin{align*} 66 E(X) &= \frac{\Sigma \left[ x \cdot f(x) \right]}{\Sigma f}\tag{\(f =\) absolute frequency} \\ 67 &= \sum_{i=1}^n \left[ x_i \cdot \Pr(X=x_i) \right]\tag{discrete}\\ 68 &= \int_\textbf{X} (x \cdot f(x)) \> dx 69\end{align*} 70 71\subsubsection*{Mode} 72 73Value of \(X\) which has the highest probability 74 75\begin{itemize}\tightlist 76\item Most popular value in discrete distributions 77\item Must exist in distribution 78\item Represented by local max in pdf 79\item Multiple modes exist when \(>1 \> X\) value have equal-highest probability 80\end{itemize} 81 82\subsubsection*{Median} 83 84Value separating lower and upper half of distribution area 85 86\textbf{Continuous:} 87\[ m = X \> \text{such that} \> \int_{-\infty}^{m} f(x) \> dx = 0.5 \] 88 89\textbf{Discrete:} (not in course) 90\begin{itemize}\tightlist 91\item Does not have to exist in distribution 92\item Add values of \(X\) smallest to largest until sum is \(\ge0.5\) 93\item If \(X_1 < 0.5 < X_2\), then median is the average of \(X_1\) and \(X_2\) 94\begin{itemize}\tightlist 95\item If \(m > 0.5\), then value of \(X\) that is reached is the median of \(X\) 96\end{itemize} 97\end{itemize} 98 99\subsubsection*{Variance \(\sigma^2\)} 100 101\begin{align*} 102\operatorname{Var}(x) &= \sum_{i=1}^n p_i (x_i-\mu)^2 \\ 103 &= \sum (x-\mu)^2\times \Pr(X=x) \\ 104 &= \sum x^2\times p(x) - \mu^2 \\ 105 &= \operatorname{E}(X^2) - [\operatorname{E}(X)]^2 \\ 106 &= E\left[(X-\mu)^2\right] 107\end{align*} 108 109\subsubsection*{Standard deviation \(\sigma\)} 110 111\begin{align*} 112\sigma &= \operatorname{sd}(X) \\ 113 &= \sqrt{\operatorname{Var}(X)} 114\end{align*} 115 116\subsection*{Binomial distributions} 117 118Conditions for a \textit{binomial distribution}: 119\begin{enumerate}\tightlist 120\item Two possible outcomes: \textbf{success} or \textbf{failure} 121\item \(\Pr(\text{success})\) (=\(p\)) is constant across trials 122\item Finite number \(n\) of independent trials 123\end{enumerate} 124 125 126\subsubsection*{Properties of \(X \sim \operatorname{Bi}(n,p)\)} 127 128\begin{align*} 129\mu(X) &= np \\ 130\operatorname{Var}(X) &= np(1-p) \\ 131\sigma(X) &= \sqrt{np(1-p)} \\ 132\Pr(X=x) &= {n \choose x}\cdot p^x \cdot (1-p)^{n-x} 133\end{align*} 134 135\begin{cas} 136 Interactive \(\rightarrow\) Distribution \(\rightarrow\) \verb;binomialPdf; 137\begin{description}[nosep, style=multiline, labelindent=0.5cm, leftmargin=3cm, font=\normalfont] 138\item[x:] no. of successes 139\item[numtrial:] no. of trials 140\item[pos:] probability of success 141\end{description} 142\end{cas} 143 144\subsection*{Continuous random variables} 145 146A continuous random variable \(X\) has a pdf \(f\) such that: 147 148\begin{enumerate} 149\item \(f(x) \ge0\forall x \) 150\item \(\int^\infty_{-\infty} f(x) \> dx = 1\) 151\end{enumerate} 152 153\begin{align*} 154 E(X) &= \int_\textbf{X} (x \cdot f(x)) \> dx \\ 155\operatorname{Var}(X) &= E\left[(X-\mu)^2\right] 156\end{align*} 157 158\[\Pr(X \le c) = \int^c_{-\infty} f(x) \> dx \] 159 160\subsection*{Two random variables \(X, Y\)} 161 162If \(X\) and \(Y\) are independent: 163\begin{align*} 164\operatorname{E}(aX+bY) & = a\operatorname{E}(X)+b\operatorname{E}(Y) \\ 165\operatorname{Var}(aX \pm bY \pm c) &= a^2\operatorname{Var}(X) + b^2\operatorname{Var}(Y) 166\end{align*} 167 168\subsection*{Linear functions \(X \rightarrow aX+b\)} 169 170\begin{align*} 171\Pr(Y \le y) &= \Pr(aX+b \le y) \\ 172 &= \Pr\left(X \le \dfrac{y-b}{a}\right) \\ 173 &= \int^{\frac{y-b}{a}}_{-\infty} f(x) \> dx 174\end{align*} 175 176\begin{align*} 177\textbf{Mean:} && \operatorname{E}(aX+b) & = a\operatorname{E}(X)+b \\ 178\textbf{Variance:} && \operatorname{Var}(aX+b) &= a^2\operatorname{Var}(X) \\ 179\end{align*} 180 181\subsection*{Expectation theorems} 182 183For some non-linear function \(g\), the expected value \(E(g(X))\) is not equal to \(g(E(X))\). 184 185\begin{align*} 186 E(X^2) &= \operatorname{Var}(X) - \left[E(X)\right]^2 \\ 187 E(X^n) &= \Sigma x^n \cdot p(x) \tag{non-linear} \\ 188 &\ne[E(X)]^n \\ 189 E(aX \pm b) &= aE(X) \pm b \tag{linear} \\ 190 E(b) &= b \tag{\(\forall b \in \mathbb{R}\)}\\ 191 E(X+Y) &= E(X) + E(Y) \tag{two variables} 192\end{align*} 193 194\begin{figure*}[hb] 195\centering 196\include{../spec/normal-dist-graph} 197\end{figure*} 198 199\subsection*{Sample mean} 200 201Approximation of the \textbf{population mean} determined experimentally. 202 203\[\overline{x} = \dfrac{\Sigma x}{n} \] 204 205where 206\begin{description}[nosep, labelindent=0.5cm] 207\item \(n\) is the size of the sample (number of sample points) 208\item \(x\) is the value of a sample point 209\end{description} 210 211\begin{cas} 212\begin{enumerate}[leftmargin=3mm] 213\item Spreadsheet 214\item In cell A1:\\ \path{mean(randNorm(sd, mean, sample size))} 215\item Edit \(\rightarrow\) Fill \(\rightarrow\) Fill Range 216\item Input range as A1:An where \(n\) is the number of samples 217\item Graph \(\rightarrow\) Histogram 218\end{enumerate} 219\end{cas} 220 221\subsubsection*{Sample size of \(n\)} 222 223\[\overline{X} = \sum_{i=1}^n \frac{x_i}{n} = \dfrac{\sum x}{n} \] 224 225Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)). 226 227For a new distribution with mean of \(n\) trials, \(\operatorname{E}(X^\prime) = \operatorname{E}(X), \quad \operatorname{sd}(X^\prime) = \dfrac{\operatorname{sd}(X)}{\sqrt{n}}\) 228 229\begin{cas} 230 231\begin{itemize} 232\item Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); where \verb;n; is the number of samples. Show histogram with Histogram key in top left 233\item To calculate parameters of a dataset: Calc \(\rightarrow\) One-variable 234\end{itemize} 235 236\end{cas} 237 238\subsection*{Population sampling} 239 240\subsubsection*{Population proportion} 241 242\[ p = \dfrac{n \text{ with attribute in population}}{\text{population size}} \] 243 244Constant for a given population. 245 246\subsection*{Sample proportion} 247 248\[\hat{p} = \dfrac{n \text{ with attribute in sample}}{\text{sample size}} \] 249 250Varies with each sample. 251 252\subsection*{Normal distributions} 253 254 255\[ Z = \frac{X - \mu}{\sigma} \] 256 257Normal distributions must have area (total prob.) of 1 \(\implies \int^\infty_{-\infty} f(x) \> dx = 1\) \\ 258\(\text{mean} = \text{mode} = \text{median}\) 259 260\begin{warning} 261 Always express \(z\) as +ve. Express confidence \textit{interval} as ordered pair. 262\end{warning} 263 264\subsection*{Confidence intervals} 265 266\begin{itemize} 267\item \textbf{Point estimate:} single-valued estimate of the population mean from the value of the sample mean \(\overline{x}\) 268\item \textbf{Interval estimate:} confidence interval for population mean \(\mu\) 269\item \(C\)\% confidence interval \(\implies\) \(C\)\% of samples will contain population mean \(\mu\) 270\end{itemize} 271 272\begin{cas} 273 Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\ 274 Set \textit{Type = One-Sample Z Int} \\ \-\hspace{1em} and select \textit{Variable} 275\end{cas} 276 277\subsubsection*{95\% confidence interval} 278 279For 95\% c.i. of population mean \(\mu\): 280 281\[ x \in \left(\overline{x}\pm1.96\dfrac{\sigma}{\sqrt{n}}\right)\] 282 283where: 284\begin{description}[nosep, labelindent=0.5cm] 285\item \(\overline{x}\) is the sample mean 286\item \(\sigma\) is the population sd 287\item \(n\) is the sample size from which \(\overline{x}\) was calculated 288\end{description} 289 290\subsubsection*{Confidence interval of \(p\) from \(\hat{p}\)} 291 292\[ x \in \left( \hat{p}\pm Z \sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}\right) \] 293 294\subsection*{Margin of error} 295 296For 95\% confidence interval of \(\mu\): 297\begin{align*} 298 M &= 1.96\times \dfrac{\sigma}{\sqrt{n}} \\ 299 &= \dfrac{1}{2}\times \text{width of c.i.} \\ 300\implies n &= \left( \dfrac{1.96\sigma}{M}\right)^2 301\end{align*} 302 303Always round \(n\) up to a whole number of samples. 304 305\subsection*{General case} 306 307For \(C\)\% c.i. of population mean \(\mu\): 308 309\[ x \in \left( \overline{x}\pm k \dfrac{\sigma}{\sqrt{n}}\right) \] 310\hfill where \(k\) is such that \(\Pr(-k < Z < k) = \frac{C}{100}\) 311 312\begin{cas} 313 Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\ 314 Set \textit{Type = One-\colorbox{important}{Prop} Z Int} \\ 315 Input x \(= \hat{p} * n\) 316\end{cas} 317 318\subsection*{Confidence interval for multiple trials} 319 320For a set of \(n\) confidence intervals (samples), there is \(0.95^n\) chance that all \(n\) intervals contain the population mean \(\mu\). 321 322\end{document}