1\documentclass[a4paper]{article} 2\usepackage[dvipsnames]{xcolor} 3\usepackage[a4paper,margin=2cm]{geometry} 4\usepackage{multicol} 5\usepackage{amsmath} 6\usepackage{amssymb} 7\usepackage{enumitem} 8\usepackage{tcolorbox} 9\usepackage{fancyhdr} 10\usepackage{pgfplots} 11\usepackage{tabularx} 12\usepackage{mhchem} 13\definecolor{important}{HTML}{ff9933} 14 15\pagestyle{fancy} 16\fancyhead[LO,LE]{Unit 3 Chemistry Revision Lecture} 17\fancyhead[CO,CE]{Andrew Lorimer} 18 19\setlength\parindent{0pt} 20 21\begin{document} 22 23\title{\large Year 12 Chemistry \\ \huge Unit 3 Revision Lecture \\ \large Monash University \\ presented by Peter Skinner} 24\author{Andrew Lorimer} 25\date{4 July 2019} 26\renewcommand{\abstractname}{} 27\maketitle 28 29\section{Course structure} 30\begin{itemize} 31\item \textbf{Unit 3:}2 SACs, 16\% of study score 32\begin{enumerate} 33\item Energy production 34\begin{itemize} 35\item Obtaining energy from fuels 36\item Fuel choices 37\item Galvanic cells 38\item Fuel cells 39\end{itemize} 40\item Optimising yield 41\begin{itemize} 42\item Rate of reactions 43\item Extent of reactions 44\item Production via electrolysis 45\item Rechargable batteries 46\end{itemize} 47\end{enumerate} 48\item \textbf{Unit 4:}3 SACs, 24\% of study score 49\item \textbf{Exam:}60\% of study score 50\begin{itemize} 51\item15 minutes reading time, 2.5 hours writing time 52\item30 multiple choice questions (spend 30---45 minutes, \textbf{do last}) - harder in new study design 53\item90 marks written questions (spend 1 hr 45 m---2 hr)\\ 54 Last year: 55\begin{itemize} 56\item23\% calculations (21 marks) 57\item44\% extended answer (40 marks) 58\item32\% short answer (29 marks) 59\end{itemize} 60\item5---10 marks on writing chemical equations 61\item Same marking panel as last year 62\item Indirect assessment of pracs 63\item $\ge$ 1 mark for significant figures 64\item Importance of written communication 65\item First parts are important, no consequential marks 66\item Use dot points (short form) - especially in rates \& concentration 67\end{itemize} 68\end{itemize} 69 70\begin{tcolorbox}[title=Key points] 71\begin{itemize} 72\item Spend 30---45 minutes on multiple choice 73\item Focus on redox reactions 74\item Use data book 75\item Multiple choice questions are hard 76\item Memorise oxidation numbers 77\end{itemize} 78\end{tcolorbox} 79 80\section{Energy production} 81 82\begin{itemize} 83\item $C=n \div v$ or $C=m \div V$ (concentration in g L$^{-1}$) 84\item Gases: $PV=nRT$ and \colorbox{important}{$n=V \div V_m$} 85\item Past exams before 2017 use different SLC 86\item Renewability - \textit{reasonable} timeframe 87\item Fuel choices - consider: 88\begin{itemize} 89\item External temperature 90\item Viscosity \colorbox{important}{(intermolecular forces)} 91\item Hygroscopic properties \colorbox{important}{(attracts water $\implies$ forms H-bonds)} 92\item \colorbox{important}{Cloud point} 93\end{itemize} 94\item Blended fuels - \colorbox{important}{use energy per mass not energy per mol} 95\end{itemize} 96 97 98\section{Yield \& rate} 99 100\begin{itemize} 101\item \colorbox{important}{Equilibrium constant $K_C$ needs units} 102\item $K_C \equiv K$ 103\item Example question for rates: limiting factor for rate, given a set (equal) rate of both reactants consumption/production 104\item Collision theory: 105\begin{enumerate} 106\item Particles must collide 107\item Particles must collide with sufficient energy to overcome $E_A$ 108\end{enumerate} 109\item Increase of rate with temperature: 110\begin{enumerate} 111\item $\uparrow$ temperature $\implies \uparrow$ energy $\implies$ more frequent collisions 112\item $\uparrow$ temperature $\implies \uparrow$ energy $\implies$ collisions occur with greater energy\\ 113 ($\implies$ greater \textit{proportion} of particles that can react per unit time) 114\end{enumerate} 115\item $\uparrow c(\text{reactants}) \implies $ more collisions 116\item Definition of \textit{rate}: more products per unit time $\longrightarrow$ faster rate 117\item Cause and effect: propose hypothesis and prove by induction 118\item Maxwell-Boltzmann distributions - $x_{\text{peak}}$ is constant for different concentrations 119\item \colorbox{important}{Memorise definition of \textit{catalyst}:} provides a reaction with an alternative energy pathway which has a lower activation energy 120\end{itemize} 121 122\subsection{Equilibria} 123\begin{itemize} 124\item \colorbox{important}{all} reactants and products are present at equilibrium 125\item $K_C$ is fixed at a constant temperature and reaction 126\item $K_C$ changes with concentrations (relative) 127\item If reaction equation is reversed, $K_C$ value will be the reciprocal 128\item If temperature changes, $K_C$ will change (but \colorbox{important}{not necessarily proportionally}) 129\item Le Chatelier's principle:\\ 130\textit{If a change is made to a system at equilibrium, \\the system will partially oppose this change \colorbox{important}{if it is possible}} 131\item Accuracy of graph drawing - \colorbox{important}{use \textbf{clear} plastic ruler} 132\begin{itemize}\item Label vertical ratios\end{itemize} 133\item Use concentration table format for calculating equilibrium constant $K_C$ 134\end{itemize} 135 136\begin{tcolorbox}[title=Important, colback=BurntOrange] 137\centering 138 $K_C$ is \textbf{not} related to the rate of reaction\\ 139 $\implies$ we cannot say how fast a reaction os going to occur from the $K_C$ value 140\end{tcolorbox} 141 142\subsection{Exothermic \& endothermic reactions} 143 144\begin{itemize} 145\item All combustion reactions are exothermic 146\item Data book: molar heat of combustion $= |\Delta H|$ 147\item Endothermic reactions rarely occur naturally (creates instability/entropy) 148\item $E_A=|E_{\text{max}}-E_{\text{initial}}|$ 149\item \colorbox{important}{If coefficients of a thermochemical equation are changed, $\Delta H$ also changes} 150\item Possible data discrepencies in theoretical results: 151\begin{itemize} 152\item State of \ce{H2O} 153\item Incomplete combustion 154\item Heat loss to environment 155\end{itemize} 156\item \colorbox{important}{Analogy with simultaneous equations} 157\item Calorimetry - \colorbox{important}{insulate \textit{sides} of can not bottom.} Be specific. 158\end{itemize} 159 Multiple choice question examples (features of \textbf{exothermic} reactions): 160\begin{enumerate}[label={\alph*)}] 161\item Products are \rule{4em}{0.5pt} as they have less chemical energy than reactants \hfill \textit{(more stable)} 162\item \rule{5em}{0.5pt} required to break bonds in products compared to reactants \hfill \textit{(more chemical energy)} 163\end{enumerate} 164 Multiple choice question examples (features of \textbf{endothermic} reactions): 165\begin{enumerate}[label={\alph*)}] 166\item Transformation of \rule{4em}{0.5pt} energy from surroundings into \rule{4em}{0.5pt}\hfill \textit{(thermal, chemical)} 167\item $\therefore$ Surroundings and reaction becomes \rule{4em}{0.5pt}\hfill \textit{(colder)} 168\end{enumerate} 169 170\section{Oxidation numbers (memorise)} 171 172\renewcommand{\arraystretch}{1.4} 173\begin{tabularx}{0.8\textwidth}{r|X} 174\textbf{Species} & \textbf{Rule} \\ 175\hline 176 Elements & Always 0 \\ 177 Ions & Same as common ion \\ 178 Hydrogen & +1 (unless present as \ce{H2O} - O.N. = 0; or as hydride - O.N. = -1) \\ 179 Oxygen & -2 (unless present as \ce{O2} - O.N. = 0; or as peroxide - O.N. = -1) \\ 180 Molecules & Sum of O.N. must equal zero \\ 181 Molecular ions & Sum of O.N. must equal overall charge on ion 182\end{tabularx} 183 184\section{Redox reactions} 185\begin{itemize} 186\item Verify equations: check charge of each side independently: charge(LHS) $=$ charge(RHS) 187\item Electrochemical series always has \colorbox{important}{oxidants} on left 188\item Top left and bottom right always react spontaneously 189\item For electrochemical cell questions: first parts are important, no consequential marks 190\item Non-standard conditions can alter positions of half-equations on electrochemical series and change $E^0$ values 191\item Secondary cells - polarity is constant, but reaction at each electrode swaps 192\end{itemize} 193 194\subsection{Galvanic cells} 195\begin{itemize} 196\item Value of $E^0$ is \textit{not} a reliable indicator for rate of reaction 197\item Half cells are physically separate 198\item \colorbox{important}{Products must remain in contact with electrodes} 199\end{itemize} 200 201\subsection{Electrolytic cells} 202\begin{itemize} 203\item Possible question: name observations 204\begin{itemize} 205\item Bubbles 206\item \ce{O2} would \textit{not} be visible 207\item Cannot \textit{see} $\uparrow[$\ce{H+}$]$ 208\item Can see \ce{Cu(s)} deposit on electrode 209\item Can see colour change (pH) - \ce{Cu2+} solution can be an indicator 210\end{itemize} 211\item Less side reactions in e.g. lithium ion cells (efficiency) 212\item Lower reactions in electrochemical series do not occur forwards (L$\rightarrow$R) 213\item Check state of \ce{H2O} - can it be liquid at that temperature? 214\end{itemize} 215 216\subsection{Fuel cells} 217\begin{itemize} 218\item Galvanic cells are primary cells, fuel cells are not primary \colorbox{important}{are they secondary?} 219\item Major disadvantage of fuel cells: expensive electrodes (they must also function as catalysts) 220\item Fuel cells - same overall reaction as combustion 221\item Reactangs must not come into contact 222\item Highly efficient 223\end{itemize} 224 225\subsection{Electrochemical series} 226 227\begin{tcolorbox}[colback=SkyBlue] 228\centering 229 Strongest oxidant will always react preferentially with best reductant\\ 230 Always identify \textit{all} chemicals present in reaction on electrochemical series 231\end{tcolorbox} 232 233\end{document}