1
2
3\documentclass[a4paper,landscape]{article}
4
5\usepackage[a4paper,landscape]{geometry}
6\usepackage{multicol}
7\usepackage[cm]{fullpage}
8\usepackage{amsmath}
9\setlength{\parindent}{0cm}
10\usepackage[nodisplayskipstretch]{setspace}
11\setstretch{1.5}
12\usepackage{graphicx}
13\usepackage{wrapfig}
14
15
16\begin{document}
17
18\pagenumbering{gobble}
19\begin{multicols}{3}
20
21 {\huge Fields}\hfill Andrew Lorimer\hspace{2em}
22
23\section*{Non-contact forces}
24\begin{itemize}
25\item electric fields (dipoles \& monopoles)
26\item magnetic fields (dipoles only)
27\item gravitational fields (monopoles only)
28\end{itemize}
29
30\begin{itemize}
31\item monopoles: field lines radiate towards central object
32\item dipoles - field lines go from + to -, or N to S
33\item closer field lines means larger force
34\item dot means out of page, cross means into page
35\end{itemize}
36
37\section*{Gravity}
38\[
39F_g=G{{m_1m_2}\over r^2}\tag{grav. force}
40\]
41
42\[
43g={F_g \over m}=G{M_{\operatorname{planet}} \over r^2}\tag{grav. acceleration}
44\]
45
46\[
47E_g = mg \Delta h\tag{grav. potential energy}
48\]
49
50\[
51W = \Delta E_g = Fx\tag{work}
52\]
53
54Area under force-distance graph = $\Delta G.P.E$
55
56Area under field-distance graph = $\Delta G.P.E / \operatorname{kg}$
57
58% \columnbreak
59
60\section*{Magnetic fields}
61% \begin{itemize}
62% \item field strength $B$ measured in tesla
63% \item magnetic flux $\Phi$ measured in weber
64% \item charge $q$ measured in coulombs
65% \item emf $\mathcal{E}$ measured in volts
66% \end{itemize}
67
68% \[
69% {E_1 \over E_2}={r_1 \over r_2}^2
70% \]
71
72\[
73F=qvB\tag{force on moving charged particles}
74\]
75
76if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
77
78
79\includegraphics[height=3cm]{/mnt/andrew/graphics/field-lines.png}
80
81\section*{Electric fields}
82
83\begin{align*}
84F=qE \tag{force on particle - $E$ is field strength} \\
85W=q_{\operatorname{point}}\Delta V \tag{work in field or points} \\
86F=k{{q_1q_2}\over r^2}\tag{Coulomb - force between particles} \\
87E=k{Q \over r^2} \tag{field at distance from charge} \\
88F=BInl \tag{force on a coil} \\
89\Phi = B_{\perp}A\tag{magnetic flux} \\
90\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{Faraday - induced emf} \\
91{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \\
92\end{align*}
93
94
95\textbf{Lenz's law:} ``$-n$'' in Faraday - emf opposes $\Delta \Phi$
96
97\textbf{Eddy currents:} counter movement within a field
98
99\textbf{Right hand grip:} thumb points to north or $I$
100
101\textbf{Right hand slap:} field, current, force are $\perp$
102
103\textbf{Flux-time graphs:} gradient $\times n = \operatorname{emf}$
104
105\textbf{Transformers:} core strengthens \& focuses $\Phi$
106
107% \columnbreak
108
109\section*{Power transmission}
110
111\begin{align*}
112 V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \tag{rms to peak $\rightarrow$ peak} \\
113 P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \tag{power loss}
114\end{align*}
115
116\includegraphics[height=4cm]{/mnt/andrew/graphics/ac-generator.png}
117
118\section*{Motors}
119% \begin{wrapfigure}{r}{-0.1\textwidth}
120
121\includegraphics[height=4cm]{/mnt/andrew/graphics/dc-motor-2.png}
122\includegraphics[height=3cm]{/mnt/andrew/graphics/ac-motor.png} \\
123% \end{wrapfigure}
124\textbf{DC:} split ring (one ring split into two halves)
125
126% \begin{wrapfigure}{r}{0.3\textwidth}
127
128% \end{wrapfigure}
129\textbf{AC:} slip ring (separate rings with constant contact)
130
131
132
133
134
135\end{multicols}
136\end{document}