1\documentclass[a4paper]{article}
2\usepackage[dvipsnames, table]{xcolor}
3\usepackage{adjustbox}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\usepackage{array}
7\usepackage{blindtext}
8\usepackage{dblfloatfix}
9\usepackage{enumitem}
10\usepackage{fancyhdr}
11\usepackage[a4paper,margin=1.8cm]{geometry}
12\usepackage{graphicx}
13\usepackage{harpoon}
14\usepackage{hhline}
15\usepackage{import}
16\usepackage{keystroke}
17\usepackage{listings}
18\usepackage{makecell}
19\usepackage{mathtools}
20\usepackage{mathtools}
21\usepackage{multicol}
22\usepackage{multirow}
23\usepackage{pgfplots}
24\usepackage{pst-plot}
25\usepackage{rotating}
26\usepackage{subfiles}
27\usepackage{tabularx}
28\usepackage{tcolorbox}
29\usepackage{tikz-3dplot}
30\usepackage{tikz}
31\usepackage{tkz-fct}
32\usepackage[obeyspaces]{url}
33\usepackage{wrapfig}
34
35
36\usetikzlibrary{%
37 angles,
38 arrows,
39 arrows.meta,
40 calc,
41 datavisualization.formats.functions,
42 decorations,
43 decorations.markings,
44 decorations.text,
45 decorations.pathreplacing,
46 decorations.text,
47 scopes
48}
49
50\newcommand\given[1][]{\:#1\vert\:}
51\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
52
53\usepgflibrary{arrows.meta}
54\pgfplotsset{compat=1.16}
55\pgfplotsset{every axis/.append style={
56 axis x line=middle,
57 axis y line=middle,
58 axis line style={->},
59 xlabel={$x$},
60 ylabel={$y$},
61}}
62
63\psset{dimen=monkey,fillstyle=solid,opacity=.5}
64\def\object{%
65 \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
66 \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
67 \rput{*0}{%
68 \psline{->}(0,-2)%
69 \uput[-90]{*0}(0,-2){$\vec{w}$}}
70}
71
72\pagestyle{fancy}
73\fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
74\fancyhead[LO,LE]{Year 12 Specialist}
75\fancyhead[CO,CE]{Andrew Lorimer}
76
77\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
78\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
79\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
80\linespread{1.5}
81\setlength{\parindent}{0pt}
82\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
83
84\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}%
85\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}%
86\newcolumntype{Y}{>{\centering\arraybackslash}X}
87
88\definecolor{cas}{HTML}{cde1fd}
89\definecolor{important}{HTML}{fc9871}
90\definecolor{dark-gray}{gray}{0.2}
91\definecolor{light-gray}{HTML}{cccccc}
92\definecolor{peach}{HTML}{e6beb2}
93\definecolor{lblue}{HTML}{e5e9f0}
94
95\newcommand{\tg}{\mathop{\mathrm{tg}}}
96\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
97\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
98\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
99
100\newtcolorbox{cas}{colframe=cas!75!black, fonttitle=\sffamily\bfseries, title=On CAS, left*=3mm}
101\newtcolorbox{theorembox}[1]{colback=green!10!white, colframe=blue!20!white, coltitle=black, fontupper=\sffamily, fonttitle=\sffamily, #1}
102\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=darkgray, fontupper=\sffamily\bfseries}
103
104\begin{document}
105
106\title{\vspace{-22mm}Year 12 Specialist\vspace{-4mm}}
107\author{Andrew Lorimer}
108\date{}
109\maketitle
110\vspace{-9mm}
111\begin{multicols}{2}
112
113 \section{Complex numbers}
114
115 \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\]
116 \begin{align*}
117 \text{Cartesian form: } & a+bi\\
118 \text{Polar form: } & r\operatorname{cis}\theta
119 \end{align*}
120
121 \subsection*{Operations}
122
123 \begin{tabularx}{\columnwidth}{|r|X|X|}
124 \hline
125 \rowcolor{cas}
126 & \textbf{Cartesian} & \textbf{Polar} \\
127 \hline
128 \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\
129 \hline
130 \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\
131 \cline{1-1}\cline{3-3}
132 \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\
133 \hline
134 \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\
135 \hline
136 \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\) \\
137 \hline
138 \end{tabularx}
139
140 \subsubsection*{Scalar multiplication in polar form}
141
142 For \(k \in \mathbb{R}^+\):
143 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\]
144
145 \noindent For \(k \in \mathbb{R}^-\):
146 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\]
147
148 \subsection*{Conjugate}
149 \vspace{-7mm} \hfill \colorbox{cas}{\texttt{conjg(a+bi)}}
150 \begin{align*}
151 \overline{z} &= a \mp bi\\
152 &= r \operatorname{cis}(-\theta)
153 \end{align*}
154
155 \subsubsection*{Properties}
156
157 \begin{align*}
158 \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\
159 \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\
160 \overline{kz} &= k\overline{z} \> \forall \> k \in \mathbb{R}\\
161 z\overline{z} &= (a+bi)(a-bi)\\
162 &= a^2 + b^2\\
163 &= |z|^2
164 \end{align*}
165
166 \subsection*{Modulus}
167
168 \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\]
169
170 \subsubsection*{Properties}
171
172 \begin{align*}
173 |z_1z_2|&=|z_1||z_2|\\
174 \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\
175 |z_1+z_2|&\le|z_1|+|z_2|
176 \end{align*}
177
178 \subsection*{Multiplicative inverse}
179
180 \begin{align*}
181 z^{-1}&=\frac{a-bi}{a^2+b^2}\\
182 &=\frac{\overline{z}}{|z|^2}a\\
183 &=r \operatorname{cis}(-\theta)
184 \end{align*}
185
186 \subsection*{Dividing over \(\mathbb{C}\)}
187
188 \begin{align*}
189 \frac{z_1}{z_2}&=z_1z_2^{-1}\\
190 &=\frac{z_1\overline{z_2}}{|z_2|^2}\\
191 &=\frac{(a+bi)(c-di)}{c^2+d^2}\\
192 & \text{then rationalise denominator}
193 \end{align*}
194
195 \subsection*{Polar form}
196
197 \[ r \operatorname{cis} \theta = r\left( \cos \theta + i \sin \theta \right) \]
198
199 \begin{itemize}
200 \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)}
201 \item{\(\theta = \operatorname{arg}(z)\) \hfill \colorbox{cas}{\texttt{arg(a+bi)}}}
202 \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}}
203 \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions}
204 \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)}
205 \end{itemize}
206
207 \begin{cas}
208 \-\hspace{1em}\verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|
209 \end{cas}
210
211 \subsection*{de Moivres' theorem}
212
213 \begin{theorembox}{}
214 \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
215 \end{theorembox}
216
217 \subsection*{Complex polynomials}
218
219 Include \(\pm\) for all solutions, incl. imaginary
220
221 \begin{tabularx}{\columnwidth}{ R{0.55} X }
222 \hline
223 Sum of squares & \(\begin{aligned}
224 z^2 + a^2 &= z^2-(ai)^2\\
225 &= (z+ai)(z-ai) \end{aligned}\) \\
226 \hline
227 Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
228 \hline
229 Division & \(P(z)=D(z)Q(z)+R(z)\) \\
230 \hline
231 Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
232 \hline
233 Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\
234 \hline
235 Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)\\
236 \hline
237 \end{tabularx}
238
239 \begin{theorembox}{title=Factor theorem}
240 If \(\beta z + \alpha\) is a factor of \(P(z)\), \\
241 \-\hspace{1em}then \(P(-\dfrac{\alpha}{\beta})=0\).
242 \end{theorembox}
243
244 \subsection*{\(n\)th roots}
245
246 \(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
247
248 \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
249
250 \begin{itemize}
251
252 \item{Same modulus for all solutions}
253 \item{Arguments separated by \(\frac{2\pi}{n} \therefore\) there are \(n\) roots}
254 \item{If one square root is \(a+bi\), the other is \(-a-bi\)}
255 \item{Give one implicit \(n\)th root \(z_1\), function is \(z=z_1^n\)}
256 \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))}
257 \end{itemize}
258
259 \noindent For \(0=az^2+bz+c\), use quadratic formula:
260
261 \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
262
263 \subsection*{Fundamental theorem of algebra}
264
265 A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\):
266
267 \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\]
268 \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\]
269
270 \subsection*{Argand planes}
271
272 \begin{center}\begin{tikzpicture}[scale=2]
273 \draw [->] (-0.2,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
274 \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$};
275 \coordinate (P) at (1,1);
276 \coordinate (a) at (1,0);
277 \coordinate (b) at (0,1);
278 \coordinate (O) at (0,0);
279 \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)};
280 \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)};
281 \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)};
282 \begin{scope}
283 \path[clip] (O) -- (P) -- (a);
284 \fill[red, opacity=0.5, draw=black] (O) circle (2mm);
285 \node at ($(O)+(20:3mm)$) {$\theta$};
286 \end{scope}
287 \filldraw (P) circle (0.5pt);
288 \end{tikzpicture}\end{center}
289
290 \begin{itemize}
291 \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)}
292 \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}}
293 \end{itemize}
294
295 \subsection*{Sketching complex graphs}
296
297 \subsubsection*{Linear}
298
299 \begin{itemize}
300 \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
301 \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
302 \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)\\Geometric: equidistant from \(a,b\)}
303 \end{itemize}
304
305 \subsubsection*{Circles}
306
307 \begin{itemize}
308 \item \(|z-z_1|^2=c^2|z_2+2|^2\)
309 \item \(|z-(a+bi)|=c \implies (x-a)^2+_(y-b)^2=c^2\)
310 \end{itemize}
311
312 \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\)
313
314 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
315 \draw [->] (0,0) -- (1,0) node [right] {$\operatorname{Re}(z)$};
316 \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$};
317 \draw [<-, dashed, thick, blue] (-1,0) -- (0,0);
318 \draw [->, thick, blue] (0,0) -- (1,1);
319 \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle;
320 \begin{scope}
321 \path[clip] (0,0) -- (1,1) -- (1,0);
322 \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm);
323 \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$};
324 \end{scope}
325 \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)};
326 \node [blue, mydot] {};
327 \end{tikzpicture}\end{center}
328
329 \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\)
330
331 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
332 \draw [->] (-0.75,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
333 \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$};
334 \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1);
335 \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)};
336 \begin{scope}
337 \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0);
338 \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm);
339 \end{scope}
340 \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)};
341 \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)};
342 \node [brown, mydot] at (-0.25,0) {};
343 \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)};
344 \node [left, font=\footnotesize] at (0,-1) {\(-1\)};
345 \node [below, font=\footnotesize] at (1,0) {\(1\)};
346 \end{tikzpicture}\end{center}
347
348 \section{Vectors}
349 \begin{center}\begin{tikzpicture}
350 \draw [->] (-0.5,0) -- (3,0) node [right] {\(x\)};
351 \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)};
352 \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)};
353 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
354 \draw [gray, dashed, thick] (0.5,0.5) -- (2.5,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, below]{\(x\vec{i}\)};
355 \draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow};
356 \end{scope}
357 \node[black, right] at (2.5,1.5) {\(y\vec{j}\)};
358 \end{tikzpicture}\end{center}
359 \subsection*{Column notation}
360
361 \[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\]
362 \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\)
363
364 \subsection*{Scalar multiplication}
365
366 \[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\]
367
368 \noindent For \(k \in \mathbb{R}^-\), direction is reversed
369
370 \subsection*{Vector addition}
371 \begin{center}\begin{tikzpicture}[scale=1]
372 \coordinate (A) at (0,0);
373 \coordinate (B) at (2,2);
374 \draw [->, thick, red] (0,0) -- (2,2) node [pos=0.5, below right] {\(\vec{u}=2\vec{i}+2\vec{j}\)};
375 \draw [->, thick, blue] (2,2) -- (1,4) node [pos=0.5, above right] {\(\vec{v}=-\vec{i}+2\vec{j}\)};
376 \draw [->, thick, orange] (0,0) -- (1,4) node [pos=0.5, left] {\(\vec{u}+\vec{v}=\vec{i}+4\vec{j}\)};
377 \end{tikzpicture}\end{center}
378
379 \[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\]
380
381 \begin{itemize}
382 \item Draw each vector head to tail then join lines
383 \item Addition is commutative (parallelogram)
384 \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}) \implies \overrightharp{AB}=\boldsymbol{b}-\boldsymbol{a}\)
385 \end{itemize}
386
387 \subsection*{Magnitude}
388
389 \[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\]
390
391 \subsection*{Parallel vectors}
392
393 \[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
394
395 For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
396 \[\boldsymbol{a \cdot b}=\begin{cases}
397 |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
398 -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
399 \end{cases}\]
400 %\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg}
401 %\includegraphics[width=1]{graphics/vector-subtraction.jpg}
402
403 \subsection*{Perpendicular vectors}
404
405 \[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\]
406
407 \subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)}
408 \[\begin{split}\hat{\boldsymbol{a}} & = {\frac{1}{|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\]
409
410 \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)}
411
412
413 \begin{center}\begin{tikzpicture}[scale=2]
414 \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)};
415 \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)};
416 \begin{scope}
417 \path[clip] (1,0.5) -- (1,0) -- (0,0);
418 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
419 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
420 \end{scope}
421 \end{tikzpicture}\end{center}
422 \begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\ &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*}
423 \noindent\colorbox{cas}{On CAS: \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}}
424
425 \subsubsection*{Properties}
426
427 \begin{enumerate}
428 \item
429 \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\)
430 \item
431 \(\boldsymbol{a \cdot 0}=0\)
432 \item
433 \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\)
434 \item
435 \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
436 \item
437 \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\)
438 \item
439 \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
440 \end{enumerate}
441
442 \subsection*{Angle between vectors}
443
444 \[\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}\]
445
446 \noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])}
447
448 (Action \(\rightarrow\) Vector \(\rightarrow\)Angle)
449
450 \subsection*{Angle between vector and axis}
451
452 \noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
453 which makes angles \(\alpha, \beta, \gamma\) with positive side of
454 \(x, y, z\) axes:
455 \[\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}\]
456
457 \noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle
458 between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
459 \(x\)-axis
460
461 \subsection*{Projections \& resolutes}
462
463 \begin{tikzpicture}[scale=3]
464 \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)};
465 \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)};
466 \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)};
467 \begin{scope}
468 \path[clip] (1,0.5) -- (1,0) -- (0,0);
469 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
470 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
471 \end{scope}
472 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
473 \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)};
474 \end{scope}
475 \draw (0,0) coordinate (O)
476 (1,0) coordinate (A)
477 (1,0.5) coordinate (B)
478 pic [draw,red,angle radius=2mm] {right angle = O--A--B};
479 \end{tikzpicture}
480
481 \subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)}
482
483 \begin{align*}
484 \boldsymbol{u} & = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} \\
485 & = \left(\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right) \\
486 & = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
487 \end{align*}
488
489 \subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)}
490 \[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\]
491
492 \subsubsection*{\(|\boldsymbol{u}|\) (scalar projection/resolute)}
493 \begin{align*}
494 s &= |\boldsymbol{u}|\\
495 &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\
496 &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\\
497 &= |\boldsymbol{a}| \cos \theta
498 \end{align*}
499
500 \subsubsection*{Rectangular (\(\parallel,\perp\)) components}
501
502 \[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\]
503
504
505 \subsection*{Vector proofs}
506
507 \textbf{Concurrent:} intersection of \(\ge\) 3 lines
508
509 \begin{tikzpicture}
510 \draw [blue] (0,0) -- (1,1);
511 \draw [red] (1,0) -- (0,1);
512 \draw [brown] (0.4,0) -- (0.6,1);
513 \filldraw (0.5,0.5) circle (2pt);
514 \end{tikzpicture}
515
516 \subsubsection*{Collinear points}
517
518 \(\ge\) 3 points lie on the same line
519
520 \begin{tikzpicture}
521 \draw [purple] (0,0) -- (4,1);
522 \filldraw (2,0.5) circle (2pt) node [above] {\(C\)};
523 \filldraw (1,0.25) circle (2pt) node [above] {\(A\)};
524 \filldraw (3,0.75) circle (2pt) node [above] {\(B\)};
525 \coordinate (O) at (2.8,-0.2);
526 \node at (O) [below] {\(O\)};
527 \begin{scope}[->, orange, thick]
528 \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)};
529 \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)};
530 \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)};
531 \end{scope}
532 \end{tikzpicture}
533
534 \begin{align*}
535 \text{e.g. Prove that}\\
536 \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\
537 \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\
538 &= \overrightharp{OA} + m\overrightharp{AB}\\
539 &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\
540 &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\
541 &=(1-m)\boldsymbol{a}+m{b}
542 \end{align*}
543 \begin{align*}
544 \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\
545 \text{where } \lambda + \mu &= 1\\
546 \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1
547 \end{align*}
548
549
550 \subsubsection*{Parallelograms}
551
552 \begin{center}\begin{tikzpicture}
553 \coordinate (O) at (0,0) node [below left] {\(O\)};
554 \coordinate (A) at (4,0);
555 \coordinate (B) at (6,2);
556 \coordinate (C) at (2,2);
557 \coordinate (D) at (6,0);
558
559 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (O)--(A) node [below left] {\(A\)};
560 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (A)--(B) node [above right] {\(B\)};
561 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (B)--(C) node [above left] {\(C\)};
562 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (C)--(O);
563
564 \draw [gray, dashed] (O) -- (B) node [pos=0.75] {\(\diagdown\diagdown\)} node [pos=0.25] {\(\diagdown\diagdown\)};
565 \draw [gray, dashed] (A) -- (C) node [pos=0.75] {\(\diagup\)} node [pos=0.25] {\(\diagup\)};
566 \begin{scope}
567 \path[clip] (C) -- (A) -- (O);
568 \fill[orange, opacity=0.5, draw=black] (0,0) circle (4mm);
569 \node at ($(0,0)+(20:8mm)$) {\(\theta\)};
570 \end{scope}
571 \draw [gray, thick, dotted] (B) -- (D) node [pos=0.5, right, black, font=\footnotesize] {\(|\boldsymbol{c}|\sin\theta\)} (A) -- (D) node [pos=0.5, below, black, font=\footnotesize] {\(|\boldsymbol{c}|\cos\theta\)};
572 \draw pic [draw,thick,red,angle radius=2mm] {right angle=O--D--B};
573 \end{tikzpicture}\end{center}
574
575 \begin{itemize}
576 \item
577 Diagonals \(\overrightharp{OB}, \overrightharp{AC}\) bisect each other
578 \item
579 If diagonals are equal length, it is a rectangle
580 \item
581 \(|\overrightharp{OB}|^2 + |\overrightharp{CA}|^2 = |\overrightharp{OA}|^2 + |\overrightharp{AB}|^2 + |\overrightharp{CB}|^2 + |\overrightharp{OC}|^2\)
582 \item
583 Area \(=\boldsymbol{c} \cdot \boldsymbol{a}\)
584 \end{itemize}
585
586 \subsubsection*{Useful vector properties}
587
588 \begin{itemize}
589 \item
590 \(\boldsymbol{a} \parallel \boldsymbol{b} \implies \boldsymbol{b}=k\boldsymbol{a}\) for some
591 \(k \in \mathbb{R} \setminus \{0\}\)
592 \item
593 If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
594 least one point in common, then they lie on the same straight line
595 \item
596 \(\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0\)
597 \item
598 \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
599 \end{itemize}
600
601 \subsection*{Linear dependence}
602
603 \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly dependent if they are \(\nparallel\) and:
604 \begin{align*}
605 0&=k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c}\\
606 \therefore \boldsymbol{c} &= m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}
607 \end{align*}
608
609 \noindent \(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
610 independent if no vector in the set is expressible as a linear
611 combination of other vectors in set, or if they are parallel.
612
613 \subsection*{Three-dimensional vectors}
614
615 Right-hand rule for axes: \(z\) is up or out of page.
616
617 \tdplotsetmaincoords{60}{120}
618 \begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick},
619 vector/.style={-stealth,red,very thick},
620 vector guide/.style={dashed,gray,thick}]
621
622 %standard tikz coordinate definition using x, y, z coords
623 \coordinate (O) at (0,0,0);
624
625 %tikz-3dplot coordinate definition using x, y, z coords
626
627 \pgfmathsetmacro{\ax}{1}
628 \pgfmathsetmacro{\ay}{1}
629 \pgfmathsetmacro{\az}{1}
630
631 \coordinate (P) at (\ax,\ay,\az);
632
633 %draw axes
634 \draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
635 \draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
636 \draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
637
638 %draw a vector from O to P
639 \draw[vector] (O) -- (P);
640
641 %draw guide lines to components
642 \draw[vector guide] (O) -- (\ax,\ay,0);
643 \draw[vector guide] (\ax,\ay,0) -- (P);
644 \draw[vector guide] (P) -- (0,0,\az);
645 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
646 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
647 \draw[vector guide] (\ax,\ay,0) -- (\ax,0,0);
648 \node[tdplot_main_coords,above right]
649 at (\ax,\ay,\az){(\ax, \ay, \az)};
650 \end{tikzpicture}\end{center}
651
652 \subsection*{Parametric vectors}
653
654 Parametric equation of line through point \((x_0, y_0, z_0)\) and
655 parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
656
657 \[\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\]
658
659 \section{Circular functions}
660
661 \(\sin(bx)\) or \(\cos(bx)\): period \(=\frac{2\pi}{b}\)
662
663 \noindent \(\tan(nx)\): period \(=\frac{\pi}{n}\)\\
664 \indent\indent\indent asymptotes at \(x=\frac{(2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\)
665
666 \subsection*{Reciprocal functions}
667
668 \subsubsection*{Cosecant}
669
670 \[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\]
671
672 \begin{itemize}
673 \item
674 \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\)
675 \item
676 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
677 \item
678 \textbf{Turning points} at
679 \(\theta = \frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\)
680 \item
681 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
682 \end{itemize}
683
684 \subsubsection*{Secant}
685
686\begin{tikzpicture}
687 \begin{axis}[ytick={-1,1}, yticklabels={\(-1\), \(1\)}, xmin=-7,xmax=7,ymin=-3,ymax=3,enlargelimits=true, xtick={-6.2830, -3.1415, 3.1415, 6.2830},xticklabels={\(-2\pi\), \(-\pi\), \(\pi\), \(2\pi\)}]
688% \addplot[blue, domain=-6.2830:6.2830,unbounded coords=jump,samples=80] {sec(deg(x))};
689 \addplot[blue, restrict y to domain=-10:10, domain=-7:7,samples=100] {sec(deg(x))} node [pos=0.93, black, right] {\(\operatorname{sec} x\)};
690 \addplot[red, dashed, domain=-7:7,samples=100] {cos(deg(x))};
691 \draw [gray, dotted, thick] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
692 \draw [gray, dotted, thick] ({axis cs:4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:4.71239,0}|-{rel axis cs:0,1});
693 \draw [gray, dotted, thick] ({axis cs:-4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:-4.71239,0}|-{rel axis cs:0,1});
694 \draw [gray, dotted, thick] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
695\end{axis}
696 \node [black] at (7,3.5) {\(\cos x\)};
697\end{tikzpicture}
698
699 \[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\]
700
701 \begin{itemize}
702
703 \item
704 \textbf{Domain}
705 \(= \mathbb{R} \setminus \frac{(2n + 1) \pi}{2} : n \in \mathbb{Z}\}\)
706 \item
707 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
708 \item
709 \textbf{Turning points} at
710 \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
711 \item
712 \textbf{Asymptotes} at
713 \(\theta = \frac{(2n + 1) \pi}{2} \> \vert \> n \in \mathbb{Z}\)
714 \end{itemize}
715
716 \subsubsection*{Cotangent}
717
718\begin{tikzpicture}
719 \begin{axis}[xmin=-3,xmax=3,ymin=-1.5,ymax=1.5,enlargelimits=true, xtick={-3.1415, -1.5708, 1.5708, 3.1415},xticklabels={\(-\pi\), \(-\frac{\pi}{2}\), \(\frac{\pi}{2}\), \(\pi\)}]
720 \addplot[blue, smooth, domain=-3:-0.1,unbounded coords=jump,samples=105] {cot(deg(x))} node [pos=0.3, left] {\(\operatorname{cot} x\)};
721\addplot[blue, smooth, domain=0.1:3,unbounded coords=jump,samples=105] {cot(deg(x))};
722\addplot[red, smooth, dashed] gnuplot [domain=-1.5:1.5,unbounded coords=jump,samples=105] {tan(x)};
723\addplot[red, smooth, dashed] gnuplot [domain=-3.5:-1.8,unbounded coords=jump,samples=105] {tan(x)} node [pos=0.5, right] {\(\tan x\)};
724\addplot[red, smooth, dashed] gnuplot [domain=1.8:3.5,unbounded coords=jump,samples=105] {tan(x)};
725 \draw [thick, red, dotted] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
726 \draw [thick, blue, dotted] ({axis cs:-3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:-3.1415,0}|-{rel axis cs:0,1});
727 \draw [thick, blue, dotted] ({axis cs:0,0}|-{rel axis cs:0,0}) -- ({axis cs:0,0}|-{rel axis cs:0,1});
728 \draw [thick, blue, dotted] ({axis cs:3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:3.1415,0}|-{rel axis cs:0,1});
729 \draw [thick, red, dotted] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
730\end{axis}
731\end{tikzpicture}
732
733 \[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\]
734
735 \begin{itemize}
736
737 \item
738 \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\)
739 \item
740 \textbf{Range} \(= \mathbb{R}\)
741 \item
742 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
743 \end{itemize}
744
745 \subsubsection*{Symmetry properties}
746
747 \[\begin{split}
748 \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
749 \operatorname{sec} (-x) & = \operatorname{sec} x \\
750 \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
751 \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
752 \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
753 \operatorname{cot} (-x) & = - \operatorname{cot} x
754 \end{split}\]
755
756 \subsubsection*{Complementary properties}
757
758 \[\begin{split}
759 \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
760 \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
761 \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
762 \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
763 \end{split}\]
764
765 \subsubsection*{Pythagorean identities}
766
767 \[\begin{split}
768 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
769 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
770 \end{split}\]
771
772 \subsection*{Compound angle formulas}
773
774 \[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\]
775 \[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\]
776 \[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\]
777
778 \subsection*{Double angle formulas}
779
780 \[\begin{split}
781 \cos 2x &= \cos^2 x - \sin^2 x \\
782 & = 1 - 2\sin^2 x \\
783 & = 2 \cos^2 x -1
784 \end{split}\]
785
786 \[\sin 2x = 2 \sin x \cos x\]
787
788 \[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\]
789
790 \subsection*{Inverse circular functions}
791
792 \begin{tikzpicture}
793 \begin{axis}[ymin=-2, ymax=4, xmin=-1.1, xmax=1.1, ytick={-1.5708, 1.5708, 3.14159},yticklabels={$-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\pi$}]
794 \addplot[color=red, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {asin(x)} node [pos=0.25, below right] {\(\sin^{-1}x\)};
795 \addplot[color=blue, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {acos(x)} node [pos=0.25, below left] {\(\cos^{-1}x\)};
796 \addplot[mark=*, red] coordinates {(-1,-1.5708)} node[right, font=\footnotesize]{\((-1,-\frac{\pi}{2})\)} ;
797 \addplot[mark=*, red] coordinates {(1,1.5708)} node[left, font=\footnotesize]{\((1,\frac{\pi}{2})\)} ;
798 \addplot[mark=*, blue] coordinates {(1,0)};
799 \addplot[mark=*, blue] coordinates {(-1,3.1415)} node[right, font=\footnotesize]{\((-1,\pi)\)} ;
800 \end{axis}
801 \end{tikzpicture}\\
802
803 Inverse functions: \(f(f^{-1}(x)) = x\) (restrict domain)
804
805 \[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\]
806 \hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\)
807
808 \[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\]
809 \hfill where \(\cos y = x, \> y \in [0, \pi]\)
810
811 \[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\]
812 \hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\)
813
814 \begin{tikzpicture}
815 \begin{axis}[yticklabel style={yshift=1.0pt, anchor=north east},x=0.1cm, y=1cm, ymax=2, ymin=-2, xticklabels={}, ytick={-1.5708,1.5708},yticklabels={\(-\frac{\pi}{2}\),\(\frac{\pi}{2}\)}]
816 \addplot[color=orange, smooth] gnuplot [domain=-35:35, unbounded coords=jump,samples=350] {atan(x)} node [pos=0.5, above left] {\(\tan^{-1}x\)};
817 \addplot[gray, dotted, thick, domain=-35:35] {1.5708} node [black, font=\footnotesize, below right, pos=0] {\(y=\frac{\pi}{2}\)};
818 \addplot[gray, dotted, thick, domain=-35:35] {-1.5708} node [black, font=\footnotesize, above left, pos=1] {\(y=-\frac{\pi}{2}\)};
819 \end{axis}
820 \end{tikzpicture}
821
822 \subsection*{Mensuration}
823
824 \begin{tikzpicture}[draw=blue!70,thick]
825 \filldraw[fill=lblue] circle (2cm);
826 \filldraw[fill=white]
827 (320:2cm) node[right] {}
828 -- (220:2cm) node[left] {}
829 arc[start angle=220, end angle=320, radius=2cm]
830 -- cycle;
831 \node {Major Segment};
832 \node at (-90:2) {Minor Segment};
833
834 \begin{scope}[xshift=4.5cm]
835 \draw circle (2cm);
836 \filldraw[fill=lblue]
837 (320:2cm) node[right] {}
838 -- (0,0) node[above] {}
839 -- (220:2cm) node[left] {}
840 arc[start angle=220, end angle=320, radius=2cm]
841 -- cycle;
842 \node at (90:1cm) {Major Sector};
843 \node at (-90:1.5) {Minor Sector};
844 \end{scope}
845 \end{tikzpicture}
846
847 \subsubsection*{Sectors}
848
849 \begin{align*}
850 A &= \pi r^2 \dfrac{\theta}{2\pi} \\
851 &= \dfrac{r^2 \theta}{2}
852 \end{align*}
853
854 \subsubsection*{Segments}
855
856 \[ A = \dfrac{r^2}{2} \left( \theta = \sin \theta \right) \]
857
858 \subsubsection*{Chords}
859
860 \begin{align*}
861 \operatorname{crd} \theta &= \sqrt{(1 - \cos\theta)^2 + \sin^2 \theta} \\
862 &= \sqrt{2 - 2\cos\theta} \\
863 &= 2 \sin \left(\dfrac{\theta}{2}\right)
864 \end{align*}
865
866 \section{Differential calculus}
867
868 \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
869
870 \subsection*{Limits}
871
872 \[\lim_{x \rightarrow a}f(x)\]
873 \(L^-,\quad L^+\) \qquad limit from below/above\\
874 \(\lim_{x \to a} f(x)\) \quad limit of a point\\
875
876 \noindent For solving \(x\rightarrow\infty\), put all \(x\) terms in denominators\\
877 e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\]
878
879 \subsubsection*{Limit theorems}
880
881 \begin{enumerate}
882 \item
883 For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
884 \item
885 \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
886 \item
887 \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
888 \item
889 \(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant
890 \item
891 \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
892 \item
893 \(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\)
894 \end{enumerate}
895
896 \subsection*{Gradients}
897
898 \textbf{Secant (chord)} - line joining two points on curve\\
899 \textbf{Tangent} - line that intersects curve at one point
900
901 \subsubsection*{Points of Inflection}
902
903 \emph{Stationary point} - i.e.
904 \(f^\prime(x)=0\)\\
905 \emph{Point of inflection} - max \(|\)gradient\(|\) (i.e.
906 \(f^{\prime\prime} = 0\))
907
908 \subsubsection*{Strictly increasing/decreasing}
909
910 For \(x_2\) and \(x_1\) where \(x_2 > x_1\):
911
912 \textbf{strictly increasing}\\
913 \-\hspace{1em}where \(f(x_2) > f(x_1)\) or \(f^\prime(x)>0\)
914
915 \textbf{strictly decreasing}\\
916 \hspace{1em}where \(f(x_2) < f(x_1)\) or \(f^\prime(x)<0\)
917 \begin{warning}
918 Endpoints are included, even where \(\boldsymbol{\frac{dy}{dx}=0}\)
919 \end{warning}
920
921
922 \subsection*{Second derivative}
923 \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
924 \implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*}
925
926 \noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken
927
928
929 \subsection*{Slope fields}
930
931 \begin{tikzpicture}[declare function={diff(\x,\y) = \x+\y;}]
932 \begin{axis}[axis equal, ymin=-4, ymax=4, xmin=-4, xmax=4, ticks=none, enlargelimits=true, ]
933 \addplot[thick, orange, domain=-4:2] {e^(x)-x-1};
934 \pgfplotsinvokeforeach{-4,...,4}{%
935 \draw[gray] ( {#1 -0.1}, {4 - diff(#1, 4) *0.1}) -- ( {#1 +0.1}, {4 + diff(#1, 4) *0.1});
936 \draw[gray] ( {#1 -0.1}, {3 - diff(#1, 3) *0.1}) -- ( {#1 +0.1}, {3 + diff(#1, 3) *0.1});
937 \draw[gray] ( {#1 -0.1}, {2 - diff(#1, 2) *0.1}) -- ( {#1 +0.1}, {2 + diff(#1, 2) *0.1});
938 \draw[gray] ( {#1 -0.1}, {1 - diff(#1, 1) *0.1}) -- ( {#1 +0.1}, {1 + diff(#1, 1) *0.1});
939 \draw[gray] ( {#1 -0.1}, {0 - diff(#1, 0) *0.1}) -- ( {#1 +0.1}, {0 + diff(#1, 0) *0.1});
940 \draw[gray] ( {#1 -0.1}, {-1 - diff(#1, -1) *0.1}) -- ( {#1 +0.1}, {-1 + diff(#1, -1) *0.1});
941 \draw[gray] ( {#1 -0.1}, {-2 - diff(#1, -2) *0.1}) -- ( {#1 +0.1}, {-2 + diff(#1, -2) *0.1});
942 \draw[gray] ( {#1 -0.1}, {-3 - diff(#1, -3) *0.1}) -- ( {#1 +0.1}, {-3 + diff(#1, -3) *0.1});
943 \draw[gray] ( {#1 -0.1}, {-4 - diff(#1, -4) *0.1}) -- ( {#1 +0.1}, {-4 + diff(#1, -4) *0.1});
944 }
945 \end{axis}
946 \end{tikzpicture}
947
948 \begin{table*}[ht]
949 \centering
950 \begin{tabularx}{\textwidth}{|r|Y|Y|Y|}
951 \hline
952 \rowcolor{lblue}
953 & \adjustbox{margin=0 1ex, valign=m}{\centering\(\dfrac{d^2 y}{dx^2} > 0\)} & \adjustbox{margin=0 1ex, valign=m}{\centering \(\dfrac{d^2y}{dx^2}<0\)} & \adjustbox{margin=0 1ex, valign=m}{\(\dfrac{d^2y}{dx^2}=0\) (inflection)} \\
954 \hline
955 \(\dfrac{dy}{dx}>0\) &
956 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-3, xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x)}; \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
957 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0.1, xmax=4, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(ln(x))}; \addplot[red] {x/1.5-0.56}; \end{axis}\end{tikzpicture} \\Rising (concave down)}&
958 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1.5, xmax=1.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {x}; \end{axis}\end{tikzpicture} \\Rising inflection point}\\
959 \hline
960 \(\dfrac{dy}{dx}<0\) &
961 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-.5, xmax=1, ymin=-.5, ymax=.5, scale=0.2, samples=100] \addplot[blue] {1/(x+1)-1}; \addplot[red] {-x}; \end{axis}\end{tikzpicture} \\Falling (concave up)}&
962 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0, xmax=1.5, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(2-x*x)^(1/2)}; \addplot[red] {-x+2}; \end{axis}\end{tikzpicture} \\Falling (concave down)}&
963 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=1.5, xmax=4.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {-x+3.1415}; \end{axis}\end{tikzpicture} \\Falling inflection point}\\
964 \hline
965 \(\dfrac{dy}{dx}=0\)&
966 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Local minimum}& \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x)}; \addplot[red, very thick] {0}; \end{axis}\end{tikzpicture} \\Local maximum}&
967 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \(\>\) \begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Stationary inflection point}\\
968 \hline
969 \end{tabularx}
970 \end{table*}
971 \begin{itemize}
972 \item
973 \(f^\prime (a) = 0, \> f^{\prime\prime}(a) > 0\) \\
974 \textbf{local min} at \((a, f(a))\) (concave up)
975 \item
976 \(f^\prime (a) = 0, \> f^{\prime\prime} (a) < 0\) \\
977 \textbf{local max} at \((a, f(a))\) (concave down)
978 \item
979 \(f^{\prime\prime}(a) = 0\) \\
980 \textbf{point of inflection} at \((a, f(a))\)
981 \item
982 \(f^{\prime\prime}(a) = 0, \> f^\prime(a)=0\) \\
983 stationary point of inflection at \((a, f(a)\)
984 \end{itemize}
985
986 \subsection*{Implicit Differentiation}
987
988 \noindent Used for differentiating circles etc.
989
990 If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\),
991 for all \(x\) and \(y\), then:
992
993 \[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
994
995 \begin{cas}
996 Action \(\rightarrow\) Calculation \\
997 \-\hspace{1em}\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}
998 \end{cas}
999
1000 \subsection*{Function of the dependent
1001 variable}
1002
1003 If \({\frac{dy}{dx}}=g(y)\), then
1004 \(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express
1005 \(e^c\) as \(A\).
1006
1007 \subsection*{Reciprocal derivatives}
1008
1009 \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
1010
1011 \subsection*{Differentiating \(x=f(y)\)}
1012 Find \(\dfrac{dx}{dy}\), then \(\dfrac{dy}{dx} = \dfrac{1}{\left(\dfrac{dx}{dy}\right)}\)
1013
1014 \subsection*{Parametric equations}
1015
1016
1017 \begin{align*}
1018 \dfrac{dy}{dt} &= \dfrac{dy}{dx} \cdot \dfrac{dx}{dt} \\
1019 \therefore \dfrac{dy}{dx} &= \dfrac{\left(\dfrac{dy}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ provided } \dfrac{dx}{dt} \ne 0 \\
1020 \dfrac{d^2y}{dx^2} &= \dfrac{\left(\dfrac{dy^\prime}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ where } y^\prime = \dfrac{dy}{dx}
1021 \end{align*}
1022
1023 \subsection*{Integration}
1024
1025 \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
1026
1027 \subsubsection*{Properties}
1028
1029 \begin{align*}
1030 \int^b_a f(x) \> dx &= \int^c_a f(x) \> dx + \int^b_c f(x) \> dx \\
1031 \int^a_a f(x) \> dx &= 0 \\
1032 \int^b_a k \cdot f(x) \> dx &= k \int^b_a f(x) \> dx \\
1033 \int^b_a f(x) \pm g(x) \> dx &= \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx \\
1034 \int^b_a f(x) \> dx &= - \int^a_b f(x) \> dx \\
1035 \end{align*}
1036
1037 \subsection*{Integration by substitution}
1038
1039 \[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
1040
1041 \begin{warning}
1042 \(\boldsymbol{f(u)}\) must be 1:1 \(\boldsymbol{\implies}\) one \(\boldsymbol{x}\) for each \(\boldsymbol{y}\)
1043 \end{warning}
1044 \begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\
1045 \text{let } u&=x+4\\
1046 \implies& {\frac{du}{dx}} = 1\\
1047 \implies& x = u - 4\\
1048 \text{then } &y=\int (2(u-4)+1)u^{\frac{1}{2}} \cdot du\\
1049 &\text{(solve as normal integral)}
1050 \end{align*}
1051
1052 \subsubsection*{Definite integrals by substitution}
1053
1054 For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and
1055 \(b\) for \(f(u) \cdot du\).
1056
1057 \subsubsection*{Trigonometric integration}
1058
1059 \[\sin^m x \cos^n x \cdot dx\]
1060
1061 \paragraph{\textbf{\(m\) is odd:}}
1062 \(m=2k+1\) where \(k \in \mathbb{Z}\)\\
1063 \(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\
1064 Substitute \(u=\cos x\)
1065
1066 \paragraph{\textbf{\(n\) is odd:}}
1067 \(n=2k+1\) where \(k \in \mathbb{Z}\)\\
1068 \(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\
1069 Substitute \(u=\sin x\)
1070
1071 \paragraph{\textbf{\(m\) and \(n\) are even:}}
1072 use identities...
1073
1074 \begin{itemize}
1075
1076 \item
1077 \(\sin^2x={1 \over 2}(1-\cos 2x)\)
1078 \item
1079 \(\cos^2x={1 \over 2}(1+\cos 2x)\)
1080 \item
1081 \(\sin 2x = 2 \sin x \cos x\)
1082 \end{itemize}
1083
1084 \subsection*{Separation of variables}
1085
1086 If \({\frac{dy}{dx}}=f(x)g(y)\), then:
1087
1088 \[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
1089
1090 \subsection*{Partial fractions}
1091
1092 To factorise \(f(x) = \frac{\delta}{\alpha \cdot \beta}\):
1093 \begin{align*}
1094 \dfrac{\delta}{\alpha \cdot \beta \cdot \gamma} &= \dfrac{A}{\alpha} + \dfrac{B}{\beta} + \dfrac{C}{\gamma} \tag{1} \\
1095 \text{Multiply by } & (\alpha \cdot \beta \cdot \gamma) \text{:} \\
1096 \delta &= \beta\gamma A + \alpha\gamma B +\alpha\beta C \tag{2} \\
1097 \text{Substitute } x &= \{\alpha, \beta, \gamma\} \text{ into (2) to find denominators}
1098 \end{align*}
1099
1100 \subsubsection*{Repeated linear factors}
1101
1102 \[ \dfrac{p(x)}{(x-a)^n} = \dfrac{A_1}{(x-a)} + \dfrac{A_2}{(x-a)^2} + \dots + \dfrac{A_n}{(x-a)^n} \]
1103
1104 \subsubsection*{Irreducible quadratic factors}
1105
1106 \[ \text{e.g. } \dfrac{3x-4}{(2x-3)(x^2+5)} = \dfrac{A}{2x-3} + \dfrac{Bx+C}{x^2+5} \]
1107
1108 \begin{cas}
1109 Action \(\rightarrow\) Transformation:\\
1110 \-\hspace{1em} \texttt{expand(..., x)}
1111
1112 To reverse, use \texttt{combine(...)}
1113 \end{cas}
1114
1115 \subsection*{Integrating \(\boldsymbol{\dfrac{dy}{dx} = g(y)}\)}
1116
1117 \[ \text{if } \dfrac{dy}{dx} = g(y), \text{ then } x = \int{\dfrac{1}{g(y)}} \> dy \]
1118
1119 \subsection*{Graphing integrals on CAS}
1120
1121 \begin{cas}
1122 \textbf{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\) \(\int\)\\
1123 For restrictions, \texttt{Define\ f(x)=...} then \texttt{f(x)\textbar{}x\textgreater{}...}
1124 \end{cas}
1125
1126 \subsection*{Solids of revolution}
1127
1128 Approximate as sum of infinitesimally-thick cylinders
1129
1130 \subsubsection*{Rotation about \(\boldsymbol{x}\)-axis}
1131
1132 \[ V = \pi\int^{x=b}_{x=a} f(x)^2 \> dx \]
1133
1134 \subsubsection*{Rotation about \(\boldsymbol{y}\)-axis}
1135
1136 \begin{align*}
1137 V &= \pi \int^{y=b}_{y=a} x^2 \> dy \\
1138 &= \pi \int^{y=b}_{y=a} (f(y))^2 \> dy
1139 \end{align*}
1140
1141 \subsubsection*{Regions not bound by \(\boldsymbol{y=0}\)}
1142
1143 \[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]
1144 \hfill where \(f(x) > g(x)\)
1145
1146 \subsection*{Length of a curve}
1147
1148 For length of \(f(x)\) from \(x=a \rightarrow x=b\):
1149 \begin{align*}
1150 &\text{Cartesian} \> & L &= \int^b_a \sqrt{1 + \left(\dfrac{dy}{dx}\right)^2} \> dx \\
1151 &\text{Parametric} \> & L & = \int^b_a \sqrt{\left(\dfrac{dx}{dt}\right)^2 + \left(\dfrac{dy}{dt}\right)^2} \> dt
1152 \end{align*}
1153
1154 \begin{cas}
1155 \begin{enumerate}[label=\alph*), leftmargin=5mm]
1156 \item Evaluate formula
1157 \item Interactive \(\rightarrow\) Calculation \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
1158 \end{enumerate}
1159 \end{cas}
1160
1161 \subsection*{Applications of antidifferentiation}
1162
1163 \begin{itemize}
1164
1165 \item
1166 \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
1167 stationary points on \(y=F(x)\)
1168 \item
1169 nature of stationary points is determined by sign of \(y=f(x)\) on
1170 either side of its \(x\)-intercepts
1171 \item
1172 if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
1173 \(n+1\)
1174 \end{itemize}
1175
1176 To find stationary points of a function, substitute \(x\) value of given
1177 point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
1178 original function.
1179
1180 \subsection*{Rates}
1181
1182 \subsubsection*{Gradient at a point on parametric curve}
1183
1184 \[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0 \text{ (chain rule)}\]
1185
1186 \[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\]
1187
1188 \subsection*{Rational functions}
1189
1190 \[f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\]
1191
1192 \subsection*{Fundamental theorem of calculus}
1193
1194 If \(f\) is continuous on \([a, b]\), then
1195
1196 \[\int^b_a f(x) \> dx = F(b) - F(a)\]
1197 \hfill where \(F = \int f \> dx\)
1198
1199 \subsection*{Differential equations}
1200
1201 \noindent\textbf{Order} - highest power inside derivative\\
1202 \textbf{Degree} - highest power of highest derivative\\
1203 e.g. \({\left(\dfrac{dy^2}{d^2} x\right)}^3\) \qquad order 2, degree 3
1204
1205 \begin{warning}
1206 To verify solutions, find \(\frac{dy}{dx}\) from \(y\) and substitute into original
1207 \end{warning}
1208
1209
1210
1211 \subsubsection*{Mixing problems}
1212
1213 \[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\]
1214
1215 \subsection*{Euler's method}
1216
1217 \[\dfrac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
1218
1219 \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
1220
1221 \begin{theorembox}{}
1222 If \(\dfrac{dy}{dx} = g(x)\) with \(x_0 = a\) and \(y_0 = b\), then:
1223 \begin{align*}
1224 x_{n+1} &= x_n + h \\
1225 y_{n+1} &= y_n + hg(x_n)
1226 \end{align*}
1227 \end{theorembox}
1228
1229
1230
1231 \include{calculus-rules}
1232
1233 \section{Kinematics \& Mechanics}
1234
1235 \subsection*{Constant acceleration}
1236
1237 \begin{itemize}
1238 \item \textbf{Position} - relative to origin
1239 \item \textbf{Displacement} - relative to starting point
1240 \end{itemize}
1241
1242 \subsubsection*{Velocity-time graphs}
1243
1244 \begin{description}[nosep, labelindent=0.5cm, leftmargin=0.5\columnwidth]
1245 \item[Displacement:] \textit{signed} area
1246 \item[Distance travelled:] \textit{total} area
1247 \end{description}
1248
1249 \[ \text{acceleration} = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right) \]
1250
1251 \begin{center}
1252 \renewcommand{\arraystretch}{1}
1253 \begin{tabular}{ l r }
1254 \hline & no \\ \hline
1255 \(v=u+at\) & \(x\) \\
1256 \(v^2 = u^2+2as\) & \(t\) \\
1257 \(s = \frac{1}{2} (v+u)t\) & \(a\) \\
1258 \(s = ut + \frac{1}{2} at^2\) & \(v\) \\
1259 \(s = vt- \frac{1}{2} at^2\) & \(u\) \\ \hline
1260 \end{tabular}
1261 \end{center}
1262
1263 \[ v_{\text{avg}} = \frac{\Delta\text{position}}{\Delta t} \]
1264 \begin{align*}
1265 \text{speed} &= |{\text{velocity}}| \\
1266 &= \sqrt{v_x^2 + v_y^2 + v_z^2}
1267 \end{align*}
1268
1269 \noindent \textbf{Distance travelled between \(t=a \rightarrow t=b\):}
1270 \begin{align*}
1271 &= \int^{b}_{a}{\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}} \> dt \tag{2D} \\
1272 &= \int^{t=b}_{t=a}{\dfrac{dx}{dt}} \> dt \tag{linear}
1273 \end{align*}
1274
1275 \noindent \textbf{Shortest distance between \(\boldsymbol{r}(t_0)\) and \(\boldsymbol{r}(t_1)\):}
1276 \[ = |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)| \]
1277
1278 \subsection*{Vector functions}
1279
1280 \[ \boldsymbol{r}(t) = x \boldsymbol{i} + y \boldsymbol{j} + z \boldsymbol{k} \]
1281
1282 \begin{itemize}
1283 \item If \(\boldsymbol{r}(t) \equiv\) position with time, then the graph of endpoints of \(\boldsymbol{r}(t) \equiv\) Cartesian path
1284 \item Domain of \(\boldsymbol{r}(t)\) is the range of \(x(t)\)
1285 \item Range of \(\boldsymbol{r}(t)\) is the range of \(y(t)\)
1286 \end{itemize}
1287
1288 \subsection*{Vector calculus}
1289
1290 \subsubsection*{Derivative}
1291
1292 Let \(\boldsymbol{r}(t)=x(t)\boldsymbol{i} + y(t)\boldsymbol(j)\). If both \(x(t)\) and \(y(t)\) are differentiable, then:
1293 \[ \boldsymbol{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j} \]
1294
1295 \subfile{dynamics}
1296 \subfile{statistics}
1297 \end{multicols}
1298\end{document}