1\PassOptionsToPackage{unicode=true}{hyperref}% options for packages loaded elsewhere 2\PassOptionsToPackage{hyphens}{url} 3% 4\documentclass[]{article} 5\usepackage{lmodern} 6\usepackage{amssymb,amsmath} 7\usepackage{ifxetex,ifluatex} 8\ifnum0\ifxetex1\fi\ifluatex1\fi=0% if pdftex 9\usepackage[T1]{fontenc} 10\usepackage[utf8]{inputenc} 11\usepackage{textcomp}% provides euro and other symbols 12\else% if luatex or xelatex 13\usepackage{unicode-math} 14\defaultfontfeatures{Scale=MatchLowercase} 15\defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1} 16\fi 17% use upquote if available, for straight quotes in verbatim environments 18\IfFileExists{upquote.sty}{\usepackage{upquote}}{} 19\IfFileExists{microtype.sty}{% use microtype if available 20\usepackage[]{microtype} 21\UseMicrotypeSet[protrusion]{basicmath}% disable protrusion for tt fonts 22}{} 23\makeatletter 24\@ifundefined{KOMAClassName}{% if non-KOMA class 25\IfFileExists{parskip.sty}{% 26\usepackage{parskip} 27}{% else 28\setlength{\parindent}{0pt} 29\setlength{\parskip}{6pt plus 2pt minus 1pt}} 30}{% if KOMA class 31\KOMAoptions{parskip=half}} 32\makeatother 33\usepackage{xcolor} 34\IfFileExists{xurl.sty}{\usepackage{xurl}}{}% add URL line breaks if available 35\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}} 36\urlstyle{same}% don't use monospace font for urls 37\usepackage{fullpage} 38\usepackage{longtable,booktabs} 39% Allow footnotes in longtable head/foot 40\IfFileExists{footnotehyper.sty}{\usepackage{footnotehyper}}{\usepackage{footnote}} 41\makesavenoteenv{longtable} 42\usepackage{graphicx,grffile} 43\makeatletter 44\makeatother 45 46% set default figure placement to htbp 47\makeatletter 48\def\fps@figure{htbp} 49\makeatother 50 51 52\author{Andrew Lorimer} 53\date{} 54 55\begin{document} 56 57\hypertarget{transformation}{% 58\section{Transformation}\label{transformation}} 59 60\textbf{Order of operations:} DRT - Dilations, Reflections, Translations 61 62\hypertarget{transforming-xn-to-ax-hnk}{% 63\subsection{\texorpdfstring{Transforming \(x^n\) to 64\(a(x-h)^n+K\)}{Transforming x\^{}n to a(x-h)\^{}n+K}}\label{transforming-xn-to-ax-hnk}} 65 66\begin{itemize} 67\tightlist 68\item 69 \(|a|\) is the dilation factor of \(|a|\) units parallel to \(y\)-axis 70 or from \(x\)-axis 71\item 72 if \(a<0\), graph is reflected over \(x\)-axis 73\item 74 \(k\) - translation of \(k\) units parallel to \(y\)-axis or from 75 \(x\)-axis 76\item 77 \(h\) - translation of \(h\) units parallel to \(x\)-axis or from 78 \(y\)-axis 79\item 80 for \((ax)^n\), dilation factor is \(1\over a\) parallel to 81 \(x\)-axis or from \(y\)-axis 82\item 83 when \(0 < |a| < 1\), graph becomes closer to axis 84\end{itemize} 85 86\hypertarget{translations}{% 87\subsection{Translations}\label{translations}} 88 89For \(y = f(x)\), these processes are equivalent: 90 91\begin{itemize} 92\tightlist 93\item 94 applying the translation \((x, y) \rightarrow (x + h, y + k)\) to the 95 graph of \(y = f(x)\) 96\item 97 replacing \(x\) with \(x − h\) and \(y\) with \(y − k\) to obtain 98 \(y − k = f (x − h)\) 99\end{itemize} 100 101\hypertarget{dilations}{% 102\subsection{Dilations}\label{dilations}} 103 104For the graph of \(y = f(x)\), there are two pairs of equivalent 105processes: 106 107\begin{enumerate} 108\def\labelenumi{\arabic{enumi}.} 109\item 110\begin{itemize} 111\tightlist 112\item 113 Dilating from \(x\)-axis: \((x, y) \rightarrow (x, by)\) 114\item 115 Replacing \(y\) with \(y \over b\) to obtain \(y = b f(x)\) 116\end{itemize} 117\item 118\begin{itemize} 119\tightlist 120\item 121 Dilating from \(y\)-axis: \((x, y) \rightarrow (ax, y)\) 122\item 123 Replacing \(x\) with \(x \over a\) to obtain \(y = f({x \over a})\) 124\end{itemize} 125\end{enumerate} 126 127For graph of \(y={1\over x}\), horizontal \& vertical dilations are 128equivalent (symmetrical). If \(y={a \over x}\), graph is contracted 129rather than dilated. 130 131\hypertarget{transforming-fx-to-yafnxcb}{% 132\subsection{\texorpdfstring{Transforming \(f(x)\) to 133\(y=Af[n(x+c)]+b\)}{Transforming f(x) to y=Af{[}n(x+c){]}+b}}\label{transforming-fx-to-yafnxcb}} 134 135Applies to exponential, log, trig, power, polynomial functions.\\ 136Functions must be written in form \(y=Af[n(x+c)] + b\) 137 138\(A\) - dilation by factor \(A\) from \(x\)-axis (if \(A<0\), reflection 139across \(y\)-axis)\\ 140\(n\) - dilation by factor \(1\over n\) from \(y\)-axis (if \(n<0\), 141reflection across \(x\)-axis)\\ 142\(c\) - translation from \(y\)-axis (\(x\)-shift)\\ 143\(b\) - translation from \(x\)-axis (\(y\)-shift) 144 145\hypertarget{power-functions}{% 146\subsection{Power functions}\label{power-functions}} 147 148\textbf{Strictly increasing:} \(f(x_2) > f(x_1)\) where \(x_2 > x_1\) 149(including \(x=0\)) 150 151\hypertarget{odd-and-even-functions}{% 152\subsubsection{Odd and even functions}\label{odd-and-even-functions}} 153 154Even when \(f(x) = -f(x)\)\\ 155Odd when \(-f(x) = f(-x)\) 156 157Function is even if it can be reflected across \(y\)-axis 158\(\implies f(x)=f(-x)\)\\ 159Function \(x^{\pm{p \over q}}\) is odd if \(q\) is odd 160 161\hypertarget{xn-where-n-in-mathbbz}{% 162\subsubsection{\texorpdfstring{\(x^n\) where 163\(n \in \mathbb{Z}^+\)}{x\^{}n where n \textbackslash{}in \textbackslash{}mathbb\{Z\}\^{}+}}\label{xn-where-n-in-mathbbz}} 164 165\begin{longtable}[]{@{}ll@{}} 166\toprule 167\(n\) is even: & \(n\) is odd:\tabularnewline 168\midrule 169\endhead 170\includegraphics[width=0.2\textwidth,height=\textheight]{graphics/parabola.png} 171& 172\includegraphics[width=0.2\textwidth,height=\textheight]{graphics/cubic.png}\tabularnewline 173\bottomrule 174\end{longtable} 175 176\hypertarget{xn-where-n-in-mathbbz-}{% 177\subsubsection{\texorpdfstring{\(x^n\) where 178\(n \in \mathbb{Z}^-\)}{x\^{}n where n \textbackslash{}in \textbackslash{}mathbb\{Z\}\^{}-}}\label{xn-where-n-in-mathbbz-}} 179 180\begin{longtable}[]{@{}ll@{}} 181\toprule 182\(n\) is even: & \(n\) is odd:\tabularnewline 183\midrule 184\endhead 185\includegraphics[width=0.2\textwidth,height=\textheight]{graphics/truncus.png} 186& 187\includegraphics[width=0.2\textwidth,height=\textheight]{graphics/hyperbola.png}\tabularnewline 188\bottomrule 189\end{longtable} 190 191\hypertarget{x1-over-n-where-n-in-mathbbz}{% 192\subsubsection{\texorpdfstring{\(x^{1\over n}\) where 193\(n \in \mathbb{Z}^+\)}{x\^{}\{1\textbackslash{}over n\} where n \textbackslash{}in \textbackslash{}mathbb\{Z\}\^{}+}}\label{x1-over-n-where-n-in-mathbbz}} 194 195\begin{longtable}[]{@{}ll@{}} 196\toprule 197\(n\) is even: & \(n\) is odd:\tabularnewline 198\midrule 199\endhead 200\includegraphics[width=0.2\textwidth,height=\textheight]{graphics/square-root-graph.png} 201& 202\includegraphics[width=0.2\textwidth,height=\textheight]{graphics/cube-root-graph.png}\tabularnewline 203\bottomrule 204\end{longtable} 205 206\hypertarget{x-1-over-n-where-n-in-mathbbz}{% 207\subsubsection{\texorpdfstring{\(x^{-1\over n}\) where 208\(n \in \mathbb{Z}^+\)}{x\^{}\{-1\textbackslash{}over n\} where n \textbackslash{}in \textbackslash{}mathbb\{Z\}\^{}+}}\label{x-1-over-n-where-n-in-mathbbz}} 209 210Mostly only on CAS. 211 212We can write 213\(x^{-1\over n} = {1\over{x^{1\over n}}} = {1\over ^n \sqrt{x}}\)n.\\ 214Domain is: 215\(\begin{cases}\mathbb{R}\setminus \{0\}\hspace{0.5em}\text{ if }n\text{ is odd} \\ \mathbb{R}^+ \hspace{2.6em}\text{if }n\text{ is even}\end{cases}\) 216 217If \(n\) is odd, it is an odd function. 218 219\hypertarget{xp-over-q-where-p-q-in-mathbbz}{% 220\subsubsection{\texorpdfstring{\(x^{p \over q}\) where 221\(p, q \in \mathbb{Z}^+\)}{x\^{}\{p \textbackslash{}over q\} where p, q \textbackslash{}in \textbackslash{}mathbb\{Z\}\^{}+}}\label{xp-over-q-where-p-q-in-mathbbz}} 222 223\[x^{p \over q} = \sqrt[q]{x^p}\] 224 225\begin{itemize} 226\tightlist 227\item 228 if \(p > q\), the shape of \(x^p\) is dominant 229\item 230 if \(p < q\), the shape of \(x^{1\over q}\) is dominant 231\item 232 points \((0, 0)\) and \((1, 1)\) will always lie on graph 233\item 234 Domain is: 235 \(\begin{cases}\mathbb{R}\hspace{4em}\text{ if }q\text{ is odd} \\ \mathbb{R}^+ \cup \{0\}\hspace{1em}\text{if }q\text{ is even}\end{cases}\) 236\end{itemize} 237 238\hypertarget{combinations-of-functions-piecewisehybrid}{% 239\subsection{Combinations of functions 240(piecewise/hybrid)}\label{combinations-of-functions-piecewisehybrid}} 241 242\[\text{e.g.}\quad f(x)=\begin{cases} ^3\sqrt{x}, \hspace{2em} x \le0 \\ 2, \hspace{3.4em}0 < x < 2 \\ x, \hspace{3.4em} x \ge2\end{cases}\] 243 244Open circle - point included\\ 245Closed circle - point not included 246 247\hypertarget{sum-difference-product-of-functions}{% 248\subsubsection{Sum, difference, product of 249functions}\label{sum-difference-product-of-functions}} 250 251\begin{longtable}[]{@{}lll@{}} 252\toprule 253\endhead 254sum & \(f+g\) & domain 255\(= \text{dom}(f) \cap \text{dom}(g)\)\tabularnewline 256difference & \(f-g\) or \(g-f\) & domain 257\(=\text{dom}(f) \cap \text{dom}(g)\)\tabularnewline 258product & \(f \times g\) & domain 259\(=\text{dom}(f) \cap \text{dom}(g)\)\tabularnewline 260\bottomrule 261\end{longtable} 262 263Addition of linear piecewise graphs - add \(y\)-values at key points 264 265Product functions: 266 267\begin{itemize} 268\tightlist 269\item 270 product will equal 0 if one of the functions is equal to 0 271\item 272 turning point on one function does not equate to turning point on 273 product 274\end{itemize} 275 276\hypertarget{matrix-transformations}{% 277\subsection{Matrix transformations}\label{matrix-transformations}} 278 279Find new point \((x^\prime, y^\prime)\). Substitute these into original 280equation to find image with original variables \((x, y)\). 281 282\hypertarget{composite-functions}{% 283\subsection{Composite functions}\label{composite-functions}} 284 285\((f \circ g)(x)\) is defined iff 286\(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\) 287 288\end{document}