1--- 2geometry: a4paper, margin=2cm 3columns: 2 4author: Andrew Lorimer 5header-includes: 6- \usepackage{setspace} 7- \usepackage{fancyhdr} 8- \pagestyle{fancy} 9-\fancyhead[LO,LE]{Year 12 Methods} 10-\fancyhead[CO,CE]{Andrew Lorimer} 11- \usepackage{graphicx} 12- \usepackage{tabularx} 13--- 14 15\setstretch{1.6} 16\pagenumbering{gobble} 17 18# Transformations 19 20**Order of operations:** DRT 21 22\begin{center}dilations --- reflections --- translations\end{center} 23 24## Transforming $x^n$ to $a(x-h)^n+K$ 25 26- dilation factor of $|a|$ units parallel to $y$-axis or from $x$-axis 27- if $a<0$, graph is reflected over $x$-axis 28- translation of $k$ units parallel to $y$-axis or from $x$-axis 29- translation of $h$ units parallel to $x$-axis or from $y$-axis 30- for $(ax)^n$, dilation factor is $1 \over a$ parallel to $x$-axis or from $y$-axis 31- when $0 < |a| < 1$, graph becomes closer to axis 32 33## Transforming $f(x)$ to $y=Af[n(x+c)]+b$# 34 35Applies to exponential, log, trig, $e^x$, polynomials. 36Functions must be written in form $y=Af[n(x+c)]+b$ 37 38- dilation by factor $|A|$ from $x$-axis (if $A<0$, reflection across $y$-axis) 39- dilation by factor $1 \over n$ from $y$-axis (if $n<0$, reflection across $x$-axis) 40- translation of $c$ units from $y$-axis ($x$-shift) 41- translation of $b$ units from $x$-axis ($y$-shift) 42 43## Dilations 44 45Two pairs of equivalent processes for $y=f(x)$: 46 471. - Dilating from $x$-axis: $(x, y) \rightarrow (x, by)$ 48- Replacing $y$ with $y \over b$ to obtain $y = b f(x)$ 49 502. - Dilating from $y$-axis: $(x, y) \rightarrow (ax, y)$ 51- Replacing $x$ with $x \over a$ to obtain $y = f({x \over a})$ 52 53For graph of $y={1 \over x}$, horizontal & vertical dilations are equivalent (symmetrical). If $y={a \over x}$, graph is contracted rather than dilated. 54 55## Matrix transformations 56 57Find new point $(x^\prime, y^\prime)$. Substitute these into original equation to find image with original variables $(x, y)$. 58 59## Reflections 60 61- Reflection **in** axis = reflection **over** axis = reflection **across** axis 62- Translations do not change 63 64## Translations 65 66For $y = f(x)$, these processes are equivalent: 67 68- applying the translation $(x, y) \rightarrow (x + h, y + k)$ to the graph of $y = f(x)$ 69- replacing $x$ with $x-h$ and $y$ with $y-k$ to obtain $y-k = f(x-h)$ 70 71## Power functions 72 73**Strictly increasing:** $f(x_2) > f(x_1)$ where $x_2 > x_1$ (including $x=0$) 74 75### Odd and even functions 76Even when $f(x) = -f(x)$ 77Odd when $-f(x) = f(-x)$ 78 79Function is even if it can be reflected across $y$-axis $\implies f(x)=f(-x)$ 80Function $x^{\pm {p \over q}}$ is odd if $q$ is odd 81 82 83\newcolumntype{C}{>{\centering\arraybackslash} m{3cm} } 84\begin{center} 85\begin{tabular}{m{1.2cm}|C|C} 86 & $n$ is even & $n$ is odd \\ 87 \hline 88 \parbox[c]{1.2cm}{$x^n,\\ n \in \mathbb{Z}^+$} & {\includegraphics[height=3cm]{graphics/parabola.png}} & {\includegraphics[height=3cm]{graphics/cubic.png}}\\ 89 \parbox[c]{1.2cm}{$x^n$,\\ $n \in \mathbb{Z}^-$} & {\includegraphics[height=3cm]{graphics/truncus.png}} & {\includegraphics[height=3cm]{graphics/hyperbola.png}}\\ 90 \parbox[c]{1.2cm}{$x^{1 \over n},\\ n \in \mathbb{Z}^+$} & {\includegraphics[height=3cm]{graphics/square-root-graph.png}} & {\includegraphics[height=3cm]{graphics/cube-root-graph.png}}\\ 91\end{tabular} 92\end{center} 93 94### $x^{-1 \over n}$ where $n \in \mathbb{Z}^+$ 95 96Mostly only on CAS. 97 98We can write $x^{-1 \over n} = {1 \over {x^{1 \over n}}} = {1 \over ^n \sqrt{x}}$n. 99Domain is: $\begin{cases} \mathbb{R} \setminus \{0\}\hspace{0.5em} \text{ if }n\text{ is odd} \\ \mathbb{R}^+ \hspace{2.6em}\text{if }n\text{ is even}\end{cases}$ 100 101If $n$ is odd, it is an odd function. 102 103\columnbreak 104 105### $x^{p \over q}$ where $p, q \in \mathbb{Z}^+$ 106 107$$x^{p \over q} = \sqrt[q]{x^p}$$ 108 109- if $p > q$, the shape of $x^p$ is dominant 110- if $p < q$, the shape of $x^{1 \over q}$ is dominant 111- points $(0, 0)$ and $(1, 1)$ will always lie on graph 112- Domain is: $\begin{cases} \mathbb{R} \hspace{4em}\text{ if }q\text{ is odd} \\ \mathbb{R}^+ \cup \{0\} \hspace{1em}\text{if }q\text{ is even}\end{cases}$ 113 114## Piecewise functions 115 116$$\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0\\2, \hspace{3.4em} 0 < x < 2\\ x, \hspace{3.4em} x \ge 2 \end{cases}$$ 117 118**Open circle:** point included 119**Closed circle:** point not included 120 121## Operations on functions 122 123For $f \pm g$ and $f \times g$: \quad $\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)$ 124 125Addition of linear piecewise graphs: add $y$-values at key points 126 127Product functions: 128 129- product will equal 0 if $f=0$ or $g=0$ 130- $f^\prime(x)=0\veebar g^\prime(x)=0\not\Rightarrow (f \times g)^\prime(x)=0$ 131 132## Composite functions 133 134$(f \circ g)(x)$ is defined iff $\operatorname{ran}(g) \subseteq \operatorname{dom}(f)$ 135 136