1---
2geometry: margin=2cm
3<!-- columns: 2 -->
4graphics: yes
5tables: yes
6author: Andrew Lorimer
7classoption: twocolumn
8
9---
10
11<!-- \renewcommand{\arraystretch}{2} -->
12# Spec - Calculus
13
14## Gradients
15
16$$m \operatorname{of} x \in [a,b] = {{f(b)-f(a)}\over {b - a}} = {dy \over dx}$$
17
18## Limit theorems
19
201. For constant function $f(x)=k$, $\lim_{x \rightarrow a} f(x) = k$
212. $\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G$
223. $\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G$
234. ${\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0$
24
25
26## First principles derivative
27
28$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$
29
30
31## Tangents & gradients
32
33**Tangent line** - defined by $y=mx+c$ where $m={dy \over dx}$
34**Normal line** - $\perp$ tangent ($m_{\operatorname{tan}} \cdot m_{\operatorname{norm}} = -1$)
35**Secant** $={{f(x+h)-f(x)} \over h}$
36
37## Derivatives
38
39
40
41| $f(x)$ | $f^\prime(x)$ |
42| --- | --- |
43| $kx^n$ | $knx^{n-1}$ |
44| $g(x) + h(x)$ | $g^\prime (x) + h^\prime (x)$ |
45| $c$ | $0$ |
46| ${u \over v}$ | ${{v{du \over dx} - u{dv \over dx}} \over v^2}$ |
47| $uv$ | $u{dv \over dx} + v{du \over dx}$ |
48| $f \circ g$ | ${dy \over du} \cdot {du \over dx}$ |
49| $\sin ax$ | $a\cos ax$ |
50| $\sin(f(x))$ | $f^\prime(x) \cdot \cos(f(x))$ |
51| $\cos ax$ | $-a \sin ax$ |
52| $e^{ax}$ | $ae^{ax}$ |
53| $\log_e {ax}$ | $1 \over x$ |
54| $\log_e f(x)$ | $f^\prime (x) \over f(x)$ |
55
56
57
58
59
60## Product rule for $y=uv$
61
62$${dy \over dx} = u{dv \over dx} + v{du \over dx}$$
63
64## Logarithms
65
66$$\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x$$
67
68## Integration
69
70$$\int f(x) dx = F(x) + c$$
71
72- area enclosed by curves
73
74| $f(x)$ | $\int f(x) \cdot dx$ |
75| ----|--- |
76| $k$ (constant) | $kx + c$ |
77| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
78| $a x^{-n}$ | $a \cdot \log_e x + c$ |
79| $e^{kx}$ | ${1 \over k} e^{kx} + c$ |
80| $e^k$ | $e^kx + c$ |
81| $\sin kx$ | $-{1 \over k} \cos (kx) + c$ |
82| $\cos kx$ | ${1 \over k} \sin (kx) + c$ |
83| ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ |
84| $g^\prime(x)\cdot f^\prime(g(x)$ | $f(g(x))$ (chain rule)|
85| $f(x) \cdot g(x)$ | $\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx$ |
86| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ |
87| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ |
88
89
90## Definite integrals
91
92$$\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)_{}$$
93
94## Kinematics
95
96**position $x$** - distance from origin or fixed point
97**displacement $s$** - change in position from starting point (vector)
98**velocity $v$** - change in position with respect to time
99**acceleration $a$** - change in velocity
100**speed** - magnitude of velocity
101
102
103
104| | no |
105| - | -- |
106| $v=u+at$ | $s$ |
107| $s=ut + {1 \over 2} at^2$ | $v$ |
108| $v^2 = u^2 + 2as$ | $t$ |
109| $s= {1 \over 2}(u+v)t$ | $a$ |
110