1---
2geometry: margin=1.9cm
3columns: 2
4graphics: yes
5author: Andrew Lorimer
6---
7
8# Circular functions
9
10Period of $a\sin(bx)$ is ${2\pi} \over b$
11
12Period of $a\tan(nx)$ is $\pi \over n$
13Asymptotes at $x={2k+1)\pi \over 2n} \> \vert \> k \in \mathbb{Z}$
14
15## Reciprocal functions
16
17### Cosecant
18
19![](graphics/csc.png)
20
21$$\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \ne 0$$
22
23- **Domain** $= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}$
24- **Range** $= \mathbb{R} \setminus (-1, 1)$
25- **Turning points** at $\theta = {{(2n + 1)\pi} \over 2} \> \vert \> n \in \mathbb{Z}$
26- **Asymptotes** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$
27
28### Secant
29
30![](graphics/sec.png)
31
32$$\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne 0$$
33
34- **Domain** $= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}$
35- **Range** $= \mathbb{R} \setminus (-1, 1)$
36- **Turning points** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$
37- **Asymptotes** at $\theta = {{(2n + 1) \pi} \over 2} \> \vert \> n \in \mathbb{Z}$
38
39### Cotangent
40
41![](graphics/cot.png)
42
43$$\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0$$
44
45- **Domain** $= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}$
46- **Range** $= \mathbb{R}$
47- **Asymptotes** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$
48
49### Symmetry properties
50
51\begin{equation}\begin{split}
52 \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
53 \operatorname{sec} (-x) & = \operatorname{sec} x \\
54 \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
55 \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
56 \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
57 \operatorname{cot} (-x) & = - \operatorname{cot} x
58\end{split}\end{equation}
59
60### Complementary properties
61
62\begin{equation}\begin{split}
63 \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
64 \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
65 \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
66 \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
67\end{split}\end{equation}
68
69### Pythagorean identities
70
71\begin{equation}\begin{split}
72 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
73 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
74\end{split}\end{equation}
75
76## Compound angle formulas
77
78$$\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y$$
79$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
80$$\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}$$
81
82## Double angle formulas
83
84\begin{equation}\begin{split}
85 \cos 2x &= \cos^2 x - \sin^2 x \\
86 & = 1 - 2\sin^2 x \\
87 & = 2 \cos^2 x -1
88\end{split}\end{equation}
89
90$$\sin 2x = 2 \sin x \cos x$$
91
92$$\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}$$
93
94## Inverse circular functions
95
96Inverse functions: $f(f^{-1}(x)) = x, \quad f(f^{-1}(x)) = x$
97Must be 1:1 to find inverse (reflection in $y=x$
98
99Domain is restricted to make functions 1:1.
100
101### $\arcsin$
102
103$$\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y, \quad \text{where } \sin y = x \text{ and } y \in [{-\pi \over 2}, {\pi \over 2}]$$
104
105### $\arcos$
106
107$$\cos^{-1} \rightarrow \mathbb{R}, \quad \cos^{-1} x = y, \quad \text{where } \cos y = x \text{ and } y \in [0, \pi]$$
108
109### $\arctan$
110
111$$\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y, \quad \text{where } \tan y = x \text{ and } y \in \left(-{\pi \over 2}, {\pi \over 2}\right)$$