1--- 2geometry: margin=2cm 3<!-- columns: 2 --> 4graphics: yes 5tables: yes 6author: Andrew Lorimer 7classoption: twocolumn 8header-includes: 9- \usepackage{harpoon} 10- \usepackage{amsmath} 11- \pagenumbering{gobble} 12 13--- 14 15# Vectors 16 17- **vector:** a directed line segment 18- arrow indicates direction 19- length indicates magnitude 20- notated as $\vec{a}, \widetilde{A}, \overrightharp{a}$ 21- column notation: $\begin{bmatrix} 22 x \\ y 23 \end{bmatrix}$ 24- vectors with equal magnitude and direction are equivalent 25 26 27![](graphics/vectors-intro.png) 28 29## Vector addition 30 31$\boldsymbol{u} + \boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines. 32Addition is commutative (parallelogram) 33 34## Scalar multiplication 35 36For $k \in \mathbb{R}^+$, $k\boldsymbol{u}$ has the same direction as $\boldsymbol{u}$ but length is multiplied by a factor of $k$. 37 38When multiplied by $k < 0$, direction is reversed and length is multplied by $k$. 39 40## Vector subtraction 41 42To find $\boldsymbol{u} - \boldsymbol{v}$, add $\boldsymbol{-v}$ to $\boldsymbol{u}$ 43 44## Parallel vectors 45 46Parallel vectors have same direction or opposite direction. 47 48**Two non-zero vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ are parallel if there is some $k \in \mathbb{R} \setminus \{0\}$ such at $\boldsymbol{u} = k \boldsymbol{v}$** 49 50## Position vectors 51 52Vectors may describe a position relative to $O$. 53 54For a point $A$, the position vector is $\overrightharp{OA}$ 55 56\vfill\eject 57 58## Linear combinations of non-parallel vectors 59 60If two non-zero vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are not parallel, then: 61 62$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q$$ 63 64![](graphics/parallelogram-vectors.jpg){#id .class width=20%} 65![](graphics/vector-subtraction.jpg){#id .class width=10%} 66 67## Column vector notation 68 69A vector between points $A(x_1,y_1), \> B(x_2,y_2)$ can be represented as $\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}$ 70 71## Component notation 72 73A vector $\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$. 74$\boldsymbol{u}$ is the sum of two components $x\boldsymbol{i}$ and $y\boldsymbol{j}$ 75Magnitude of vector $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$ 76 77Basic algebra applies: 78$(x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}$ 79Two vectors equal if and only if their components are equal. 80 81## Unit vectors 82 83A vector of length 1. $\boldsymbol{i}$ and $\boldsymbol{j}$ are unit vectors. 84 85A unit vector in direction of $\boldsymbol{a}$ is denoted by $\hat{\boldsymbol{a}}$: 86 87$$\hat{\boldsymbol{a}}={1 \over {|\boldsymbol{a}|}}\boldsymbol{a}\quad (\implies |\hat{\boldsymbol{a}}|=1)$$ 88 89Also, unit vector of $\boldsymbol{a}$ can be defined by $\boldsymbol{a} \cdot {|\boldsymbol{a}|}$ 90 91## Scalar products / dot products 92 93If $\boldsymbol{a} = a_i \boldsymbol{i} + a_2 \boldsymbol{j}$ and $\boldsymbol{b} = b_i \boldsymbol{i} + b_2 \boldsymbol{j}$, the dot product is: 94$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$$ 95 96Produces a real number, not a vector. 97 98$$\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$$ 99 100**on CAS:** `dotP([a b c], [d e f])` 101 102## Scalar product properties 103 1041. $k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})$ 1052. $\boldsymbol{a \cdot 0}=0$ 1063. $\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}$ 1074. $\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1$ 1085. If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular 1096. $\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2$ 110 111For parallel vectors $\boldsymbol{a}$ and $\boldsymbol{b}$: 112$$\boldsymbol{a \cdot b}=\begin{cases} 113|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\ 114-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions} 115\end{cases}$$ 116 117## Geometric scalar products 118 119$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$ 120 121where $0 \le \theta \le \pi$ 122 123## Perpendicular vectors 124 125If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, then $\boldsymbol{a} \perp \boldsymbol{b}$ (since $\cos 90 = 0$) 126 127## Finding angle between vectors 128 129**positive direction** 130 131$$\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}$$ 132 133**on CAS:** `angle([a b c], [a b c])` (Action -> Vector -> Angle) 134 135 136## Vector projections 137 138Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitude of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$. 139 140$$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$ 141 142## Vector proofs 143 144**Concurrent lines -** $\ge$ 3 lines intersect at a single point 145**Collinear points -** $\ge$ 3 points lie on the same line ($\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}$ where $\lambda + \mu = 1$. If $C$ is between $\vec{AB}$, then $0 \lt \mu \lt 1$) 146 147Useful vector properties: 148 149- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel, then $\boldsymbol{b}=k\boldsymbol{a}$ for some $k \in \mathbb{R} \setminus \{0\}$ 150- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel with at least one point in common, then they lie on the same straight line 151- Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$ 152- $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$ 153 154## Linear dependence 155 156Vectors $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent if they are non-parallel and: 157 158$$k\vec{a}+l\vec{b}+m\vec{c} = 0$$ 159$$\therefore \vec{c} = m\vec{a} + n\vec{b} \quad \text{(simultaneous)}$$ 160 161$\vec{a}, \vec{b},$ and $\vec{c}$ are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel. 162 163Vector $\vec{w}$ is a linear combination of vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}$ 164 165## Three-dimensional vectors 166 167Right-hand rule for axes - $z$ is up or out of page. 168 169## Angle between vector and axis 170 171Direction of a vector can be given by the angles it makes with $\vec{i}, \vec{j}, \vec{k}$ directions. 172 173For $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ which makes angles $\alpha, \beta, \gamma$ with positive direction of $x, y, z$ axes: 174$$\cos \alpha = {a_1 \over |\vec{a}|}, \quad \cos \beta = {a_2 \over |\vec{a}|}, \quad \cos \gamma = {a_3 \over |\vec{a}|}$$ 175 176**on CAS:** `angle([a b c], [1 0 0])` for angle between $a\vec{i} + b\vec{j} + c\vec{k}$ and $x$-axis 177