1---
2geometry: margin=2cm
3columns: 2
4graphics: yes
5tables: yes
6author: Andrew Lorimer
7---
8
9
10\pagenumbering{gobble}
11
12
13# Methods - Calculus
14
15## Average rate of change
16
17$$m \operatorname{of} x \in [a,b] = {{f(b)-f(a)}\over {b - a}} = {dy \over dx}$$
18
19On CAS: (Action|Interactive) $\rightarrow$ Calculation $\rightarrow$ Diff $\rightarrow$ $f(x)$ or $y=\dots$
20
21## Instantaneous rate of change
22
23**Secant** - line passing through two points on a curve
24**Chord** - line segment joining two points on a curve
25
26Estimated by using two given points on each side of the concerned point.
27
28## Limits & continuity
29
30### Limit theorems
31
321. For constant function $f(x)=k$, $\lim_{x \rightarrow a} f(x) = k$
332. $\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G$
343. $\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G$
354. ${\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0$
36
37A function is continuous if $L^-=L^+=f(x)$ for all values of $x$.
38
39## First principles derivative
40
41$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$
42
43Not differentiable at:
44
45- discontinuous points
46- sharp point/cusp
47- vertical tangents ($\infty$ gradient)
48
49## Tangents & gradients
50
51**Tangent line** - defined by $y=mx+c$ where $m={dy \over dx}$
52**Normal line** - $\perp$ tangent ($m_{{tan}} \cdot m_{\operatorname{norm}} = -1$)
53**Secant** $={{f(x+h)-f(x)} \over h}$
54
55$$\tan \theta = m = f^\prime (x)$$
56
57where $\theta$ is the angle that tangent line makes with +ve direction of $x$-axis
58
59## Strictly increasing
60
61- $f$ is **strictly increasing** where $f(x_2) > f(x_1)$ and $x_2 > x_1$
62- $f$ is **strictly decreasing** where $f(x_2) < f(x_1)$ and $x_2 > x_1$
63- If $f^\prime (x) > 0$ for all $x$ in interval, then $f$ is **strictly increasing**
64- If $f^\prime(x) < 0$ for all $x$ in interval, then $f$ is **strictly decreasing**
65- Endpoints are included, even where gradient $=0$
66
67### Solving on CAS
68
69**In main**: type function. Interactive $\rightarrow$ Calculation $\rightarrow$ Line $\rightarrow$ (Normal | Tan line)
70**In graph**: define function. Analysis $\rightarrow$ Sketch $\rightarrow$ (Normal | Tan line). Type $x$ value to solve for a point. Return to show equation for line.
71
72## Stationary points
73
74Stationary where $m=0$.
75Find derivative, solve for ${dy \over dx} = 0$
76
77![](graphics/stationary-points.png){#id .class width=50%}
78
79**Local maximum at point $A$**
80- $f^\prime (x) > 0$ left of $A$
81- $f^\prime (x) < 0$ right of $A$
82
83**Local minimum at point $B$**
84- $f^\prime (x) < 0$ left of $B$
85- $f^\prime (x) > 0$ right of $B$
86
87**Stationary** point of inflection at $C$
88
89## Function derivatives
90
91
92| $f(x)$ | $f^\prime(x)$ |
93| ------ | ------------- |
94| $x^n$ | $nx^{n-1}$ |
95| $kx^n$ | $knx^{n-1}$ |
96| $g(x) + h(x)$ | $g^\prime (x) + h^\prime (x)$ |
97| $c$ | $0$ |
98| ${u \over v}$ | ${{v{du \over dx} - u{dv \over dx}} \over v^2}$ |
99| $uv$ | $u{dv \over dx} + v{du \over dx}$ |
100| $f \circ g$ | ${dy \over du} \cdot {du \over dx}$ |
101