1# Differential calculus
23
## Limits
45
$$\lim_{x \rightarrow a}f(x)$$
67
$L^-$ - limit from below
89
$L^+$ - limit from above
1011
$\lim_{x \to a} f(x)$ - limit of a point
1213
- Limit exists if $L^-=L^+$
14- If limit exists, point does not.
1516
Limits can be solved using normal techniques (if div 0, factorise)
1718
## Limit theorems
1920
1. For constant function $f(x)=k$, $\lim_{x \rightarrow a} f(x) = k$
212. $\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G$
223. $\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G$
234. ${\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0$
2425
Corollary: $\lim_{x \rightarrow a} c \times f(x)=cF$ where $c=$ constant
2627
## Solving limits for $x\rightarrow\infty$
2829
Factorise so that all values of $x$ are in denominators.
3031
e.g.
3233
$$\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2$$
3435
36
37
## Continuous functions
3839
A function is continuous if $L^-=L^+=f(x)$ for all values of $x$.