1# Circular functions
2
3## Reciprocal functions
4
5### Cosecant
6
7$$\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \ne 0$$
8
9- **Domain** $= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}$
10- **Range** $= \mathbb{R} \setminus (-1, 1)$
11- **Turning points** at $\theta = {{(2n + 1)\pi} \over 2} \> \vert \> n \in \mathbb{Z}$
12- **Asymptotes** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$
13
14
15### Secant
16
17$$\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne 0$$
18
19- **Domain** $= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}$
20- **Range** $= \mathbb{R} \setminus (-1, 1)$
21- **Turning points** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$
22- **Asymptotes** at $\theta = {{(2n + 1) \pi} \over 2} \> \vert \> n \in \mathbb{Z}$
23
24
25### Cotangent
26
27$$\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0$$
28
29- **Domain** $= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}$
30- **Range** $= \mathbb{R}$
31- **Asymptotes** at $\theta = n\pi \> \vert \> n \in \mathbb{Z}$
32
33### Symmetry properties
34
35\begin{equation}\begin{split}
36 \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
37 \operatorname{sec} (-x) & = \operatorname{sec} x \\
38 \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
39 \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
40 \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
41 \operatorname{cot} (-x) & = - \operatorname{cot} x
42\end{split}\end{equation}
43
44### Complementary properties
45
46\begin{equation}\begin{split}
47 \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
48 \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
49 \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
50 \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
51\end{split}\end{equation}
52
53### Pythagorean identities
54
55\begin{equation}\begin{split}
56 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
57 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
58\end{split}\end{equation}